Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 April 1988

G. Belingardi, P.M. Calderale, G. Cozzari and F. Zingariello

The automotive industry is very interested in sheet metal forming simulation using numerical techniques such as the finite element method. A cooperative research program between…

75

Abstract

The automotive industry is very interested in sheet metal forming simulation using numerical techniques such as the finite element method. A cooperative research program between the Stamping Division of FIAT Auto and the Mechanics Department of the Politecnico di Torino was established with the aim of exploring the present possibilities of these techniques. This paper deals with the simulation of the deep forming of an axisymmetrical component, the axisymmetry being characterized by a double curvature profile, and is considered to be the first feasibility study. A sheet was modelled by fournode axisymmetric elements; the punch, the die and the blankholder were modelled by gap elements. The metal sheet was free to move along the punch and the die edges, with a continuous variation of the boundary conditions. The highly non‐linear problem requires an adequate description through the carefully considered use of the appropriate options of the MARC package (release K2). Moreover, some subroutines were written ad hoc to complete the discretization. Results are presented as strain and stress histories during the stamping process and as total forming force exerted by the punch to deform the sheet. In addition the spring‐back phase was considered in order to calculate the back deformation and the residual stress. Lastly, a comparison of the behaviour obtained with two different kinds of steel are reported.

Details

Engineering Computations, vol. 5 no. 4
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 6 July 2015

Manish Garg, B S Salaria and V K Gupta

– The purpose of this paper is to investigate steady state creep behavior of a functionally graded rotating disc under varying thermal gradient (TG).

132

Abstract

Purpose

The purpose of this paper is to investigate steady state creep behavior of a functionally graded rotating disc under varying thermal gradient (TG).

Design/methodology/approach

The steady state creep in a rotating FGM disc with linearly varying thickness has been investigated by using von-Mises yield criterion. The disc under investigation is assumed to be made of FGM containing non-linear distribution of silicon carbide particle (SiCp) in a matrix of pure aluminum along the radial distance. The creep behavior of the FGM composite disc is described by threshold stress-based law. The stresses and strain rates in the FGM disc have been estimated for different kinds of TG.

Findings

The results indicate that when the FGM disc is subjected to a radial TG, with temperature increasing with increasing radius, the radial stress in the disc increases over the entire disc but the tangential and effective stresses increase near the inner radius and decrease toward the outer radius. The imposition of such a radial TG in the FGM disc leads to significant reduction in the radial and tangential strain rates. With the increase in magnitude of TG in the FGM disc, the inhomogeneity in creep stresses increases but the inhomogeneity in strain rates decreases significantly, thereby reducing the chances of distortion in the FGM disc.

Originality/value

The creep strain rates in rotating FGM disc could be significantly reduced when the disc is subjected to a radial TG, with temperature increasing with increasing radius.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 1997

Longwu Wu

FEM analysis has been increasingly employed to simulate sheetmetal forming processes for industrial application purposes. From the simulation results, finite element analysts are…

562

Abstract

FEM analysis has been increasingly employed to simulate sheetmetal forming processes for industrial application purposes. From the simulation results, finite element analysts are able to predict the occurrences of splits and wrinkles therefore they can make recommendations of changes to the die design and/or to the part design to avoid possible stamping failures. The number of real die tryouts can be reduced, thus, the design cycle is shortened and manufacturing costs lowered. In the early times, application analysts were mostly concentrated on simulation of the stamping process itself starting from simple models, later running full size 3D models with large number of elements.

Details

Engineering Computations, vol. 14 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3
Per page
102050