G. Takyi, E.H. Amalu and P.K. Bernasko
The purpose of this paper is to evaluate the effect of solder wettability on the thermal performance of a thermo‐electric cooler (TEC) of a 980 nm pump laser module.
Abstract
Purpose
The purpose of this paper is to evaluate the effect of solder wettability on the thermal performance of a thermo‐electric cooler (TEC) of a 980 nm pump laser module.
Design/methodology/approach
In this paper, TEC thermal performance has been evaluated using a heat pump test. The results were compared with scanning acoustic microscopy (C‐SAM) results in order to have a better understanding of the thermal behaviour of the TEC. In the C‐SAM experiments, images were taken at the interfaces between the housing and TEC, as well as at the interfaces between the chip‐on‐carrier (CoC) and TEC.
Findings
The heat pump test results indicate a strong correlation with the C‐SAM test results. The C‐SAM observations show good solder joint at the interface between the TEC and housing in the case of the device that yielded a good heat pump test result (11.5°C) and poor solder joints (gross de‐lamination) at the interface between the TEC and housing in the case of the device that yielded a poor heat pump test result (24.4°C). The C‐SAM observations did not show much difference at the interface between the CoC and TEC. The results from this study were used to qualify the post‐vacuum soldered laser pump devices at JDS Uniphase, Plymouth, UK.
Originality/value
The findings presented in this paper indicate that the level of solder wettability at the interfaces between the piece parts impacts the thermal performance of the TEC.
Details
Keywords
Norliza Ismail, Azman Jalar, Maria Abu Bakar, Roslina Ismail and Najib Saedi Ibrahim
The purpose of this paper is to investigate the wettability and intermetallic (IMC) layer formation of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint according to the formulation of…
Abstract
Purpose
The purpose of this paper is to investigate the wettability and intermetallic (IMC) layer formation of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint according to the formulation of solder paste because of different types of fluxes.
Design/methodology/approach
Solder pastes were prepared by mixing SAC305 solder powder with different flux and different wt.% of carbon nanotube (CNT). Fourier transform infrared spectroscopy was used to identify functional groups from different fluxes of as-formulated solder paste. The solder pastes were then subjected to stencil printing and reflow process. Solderability was investigated via contact angle analysis and the thickness of cross-sectionally intermetallic layer.
Findings
It was found that different functional groups from different fluxes showed different physical behaviour, indicated by contact angle value and IMC layer thickness. “Aromatic contain” functional group lowering the contact angle while non-aromatic contain functional group lowering the thickness of IMC layer. The higher the CNT wt.%, the lower the contact angle and IMC layer thickness, regardless of different fluxes. Relationship between contact angle and IMC layer thickness is found to have distinguished region because of different fluxes. Thus it may be used as guidance in flux selection for solder paste formulation.
Research limitations/implications
However, detail composition of the fluxes was not further explored for the scope of this paper.
Originality/value
The quality of solder joint of SAC305/CNT/Cu system, as indicated by contact angle and the thickness of IMC layer formation, depends on existence of functional group of the fluxes.
Details
Keywords
Hardinnawirda Kahar, Zetty Akhtar Abd Malek, Siti Rabiatull Aisha Idris and Mahadzir Ishak
This paper aims to study the effect of aging and cooling rate on the reliability of the solder joint using electroless nickel boron (EN-Boron) as a surface finish in the…
Abstract
Purpose
This paper aims to study the effect of aging and cooling rate on the reliability of the solder joint using electroless nickel boron (EN-Boron) as a surface finish in the electronic packaging area.
Design/methodology/approach
EN-Boron was plated on a Cu substrate through electroless plating method. This process was followed by reflow soldering of Sn–3.0Ag–0.5Cu solder alloy on metallized Cu substrate to form a joining. Then, the specimens were cooled using different cooling mediums such as air (slow cooling) with 15.7 °C/min and water (fast cooling) with 110.5 °C/min. After that, the specimens were subjected to isothermal aging at 150°C for 0, 250 and 1,000 h. Finally, they went through a lap shear test following ASTM D1002. Optical microscope and scanning electron microscopy were used for intermetallic compound (IMC) characterization. The type of IMC formed was confirmed by field emission scanning electron microscope-energy-dispersive X-ray spectroscopy (FESEM-EDX).
Findings
The results showed that the IMC type changed from the combination of Ni3Sn4 and (Ni, Cu)3Sn4 after reflow soldering into fully (Ni, Cu)3Sn4 when aged for 1,000 h. The formation of (Ni, Cu)3Sn4 and Cu3Sn underneath the IMC layer played a role in reducing the shear strength of joining. Overall, water cooling was reported to provide higher shear strength of solder joint compared to air cooling medium.
Originality/value
The shear strength when using EN-Boron as the surface finish is comparable to the surface finish conventionally used.
Details
Keywords
Peter K. Bernasko, Sabuj Mallik and G. Takyi
The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints…
Abstract
Purpose
The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints.
Design/methodology/approach
To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester).
Findings
It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids.
Research limitations/implications
A proper correlation between shear strength and fracture mode is required.
Practical implications
The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint.
Originality/value
The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.