P. Sudarsana Reddy and Paluru Sreedevi
Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present…
Abstract
Purpose
Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present work. Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.
Design/methodology/approach
Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.
Findings
The sway of these influenced parameters on standard rates of heat transport, nanoparticles Sherwood number and Sherwood number of microorganisms is also illustrated through graphs. It is perceived that the rates of heat transport remarkably intensifies inside the cavity region with amplifying thermophoresis number values.
Originality/value
The research work carried out in this paper is original and no part is copied from others’ work.
Details
Keywords
Paluru Sreedevi and P. Sudarsana Reddy
This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity…
Abstract
Purpose
This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.
Design/methodology/approach
Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.
Findings
It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.
Originality/value
To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.
Details
Keywords
P. Sudarsana Reddy and P. Sreedevi
Steady-state mixed convection boundary layer flow, heat and mass transfer characteristics of Buongiorno's model nanofluid over an inclined porous vertical plate with thermal…
Abstract
Purpose
Steady-state mixed convection boundary layer flow, heat and mass transfer characteristics of Buongiorno's model nanofluid over an inclined porous vertical plate with thermal radiation and chemical reaction are presented in this analysis.
Design/methodology/approach
The governing nonlinear partial differential equations represent the flow model that can be converted into system of nonlinear ordinary differential equations using the similarity variables and are solved numerically using finite element method.
Findings
The rates of nondimensional temperature and concentration are both decelerate with the higher values of thermophoresis parameter (Nt).
Originality/value
The work carried out in this paper is original.
Details
Keywords
Patakota Sudarsana Reddy, Paluru Sreedevi and Kavaturi Venkata Suryanarayana Rao
The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a…
Abstract
Purpose
The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a rotating disk. Two types of carbon nanotubes, single and multi-walled, are considered in this analysis.
Design/methodology/approach
The non-dimensional system of governing equations is constructed using compatible transformations. These equations together with boundary conditions are solved numerically by using the most prominent Finite element method. The influence of various pertinent parameters such as magnetic parameter (0.4 – 1.0), nanoparticle volume fraction parameter (0.1 – 0.6), porosity parameter (0.3 – 0.6), radiation parameter (0.1 – 0.4), Prandtl number (2.2 – 11.2), space-dependent (−3.0 – 3.0), temperature-dependent (−3.0 – 1.5), velocity slip parameter (0.1 – 1.0), thermal slip parameter (0.1 – 0.4) and chemical reaction parameter (0.3 – 0.6) on nanofluids velocity, temperature and concentration distributions, as well as rates of velocity, temperature and concentration is calculated and the results are plotted through graphs and tables. Also, a comparative analysis is carried out to verify the validation of the present numerical code and found good agreement.
Findings
The results indicate that the temperature of the fluid elevates with rising values of nanoparticle volume fraction parameter. Furthermore, the rates of heat transfer rise from 4.8% to 14.6% when carbon nanotubes of 0.05 volume fraction are suspended into the base fluid.
Originality/value
The work carried out in this analysis is original and no part is copied from other sources.
Details
Keywords
P. Sreedevi, P. Sudarsana Reddy and A.J. Chamkha
This article presents a numerical study of the heat transfer properties of a nanofluid created using engine oil as the common fluid and Fe3O4 nanoparticles within a square cavity…
Abstract
Purpose
This article presents a numerical study of the heat transfer properties of a nanofluid created using engine oil as the common fluid and Fe3O4 nanoparticles within a square cavity embedded with porous media using the LTNE model in the presence of a Cattaneo–Christov heat flux. To obtain the governing boundary layer equations, the Boussinesq approximation and Darcy model are employed.
Design/methodology/approach
By applying the Finite Element method, the modeling equations for dimensionless vorticity, stream function and temperature contours with conforming boundary and initial conditions are scrutinized.
Findings
One important finding is that streamlines create a core vortex that is oriented centrally and has longer thermal relaxation times. In contrast, solid state isotherms are hardly affected by growth in thermal relaxation parameter values when compared to fluid state isotherms.
Originality/value
The research work carried out in this work is original and no part is copied from others.
Details
Keywords
Faraz Afshari, Azim Doğuş Tuncer, Adnan Sözen, Halil Ibrahim Variyenli, Ataollah Khanlari and Emine Yağız Gürbüz
Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat…
Abstract
Purpose
Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16.
Design/methodology/approach
The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers.
Findings
The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively.
Originality/value
In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.
Details
Keywords
Saeed Dinarvand, Seyed Mehdi Mousavi, Mohammad Yousefi and Mohammadreza Nademi Rostami
The purpose of this paper is to study the steady laminar magnetohydrodynamics (MHD) flow of a magnesium oxide-silver/water hybrid nanofluid along a horizontal slim needle with…
Abstract
Purpose
The purpose of this paper is to study the steady laminar magnetohydrodynamics (MHD) flow of a magnesium oxide-silver/water hybrid nanofluid along a horizontal slim needle with thermal radiation by considering dual solutions.
Design/methodology/approach
It is assumed that the needle can move in the same or opposite direction of the free stream. Also the solid phase and fluid phase are in thermal equilibrium. The basic partial differential equations become dimensionless using a similarity transformation method. Moreover, problem coding is accomplished using the finite difference method. The emerging parameters are nanoparticles mass (0–40 gr), base fluid mass (100 gr), needle’s size (0.001–0.2), magnetic field parameter, velocity ratio parameter, radiation parameter and Prandtl number (6.2).
Findings
With help of the stability analysis, it is shown that always the first solutions are physically stable. Results indicate that the magnetic parameter and the second nanoparticle’s mass limit the range of the velocity ratio parameter for which the solution exists. Besides, the magnetic parameter leads to decrease of quantities of engineering interest, i.e. skin friction coefficient and local Nusselt number.
Originality/value
To the best of the authors’ knowledge, no one has ever attempted to study the present problem through a mass-based model for hybrid nanofluid. Moreover, the dual solutions for the problem are new. Indeed, the results of this paper are purely original and the numerical achievements were never published up to now. Finally, the authors expect that the present investigation would be useful in hot-wire anemometer or shielded thermocouple for measuring the velocity of the wind, etc.
Details
Keywords
Bashaer Kadhim Al-Bahrani and Alaa Hasan A. Al-Muslimawi
The article aims to provide an accurate and efficient numerical algorithm for viscous flows in power-law fluids under various thermal boundary and partial slip conditions.
Abstract
Purpose
The article aims to provide an accurate and efficient numerical algorithm for viscous flows in power-law fluids under various thermal boundary and partial slip conditions.
Design/methodology/approach
We are conducting a numerical investigation using the Taylor–Galerkin/pressure correction finite element method, which builds upon the work of previous researchers. Here, attention is therefore given to the interplay of various thermal boundary and stick-slip conditions and their impact on non-isothermal inelastic fluid.
Findings
The results demonstrate the influence of the Prandtl, Brinkman and Reynolds numbers on the flow’s thermal and hydrodynamic behavior, concentrating on the impact of slip at the wall. Furthermore, we have presented the effects of these dimensionless parameters on the detailed local and average Nusselt numbers, illustrated the high accuracy we obtained for numerical convergence, and compared our results with those of previous papers, observing excellent agreement.
Practical implications
We have successfully tested the code under the presented industrial conditions. Future research directions on this topic aim for efficient and robust solvers for non-Newtonian thermal rheological models; this algorithm can be used for that purpose.
Originality/value
This algorithm has never been used for numerical analysis of such a problem previously.
Details
Keywords
Anup Kumar, Bhupendra Kumar Sharma, Bandar Bin-Mohsen and Unai Fernandez-Gamiz
A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach…
Abstract
Purpose
A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach their energy needs in areas where traditional fuels are in use. This study aims to examine the sensitivity analysis for optimizing the heat transfer and entropy generation in the Jeffrey magnetohydrodynamic hybrid nanofluid flow under the influence of motile gyrotactic microorganisms with solar radiation in the parabolic trough solar collectors. The influences of viscous dissipation and Ohmic heating are also considered in this investigation.
Design/methodology/approach
Governing partial differential equations are derived via boundary layer assumptions and nondimensionalized with the help of suitable similarity transformations. The resulting higher-order coupled ordinary differential equations are numerically investigated using the Runga-Kutta fourth-order numerical approach with the shooting technique in the computational MATLAB tool.
Findings
The numerical outcomes of influential parameters are presented graphically for velocity, temperature, entropy generation, Bejan number, drag coefficient and Nusselt number. It is observed that escalating the values of melting heat parameter and the Prandl number enhances the Nusselt number, while reverse effect is observed with an enhancement in the magnetic field parameter and bioconvection Lewis number. Increasing the magnetic field and bioconvection diffusion parameter improves the entropy and Bejan number.
Originality/value
Nanotechnology has captured the interest of researchers due to its engrossing performance and wide range of applications in heat transfer and solar energy storage. There are numerous advantages of hybrid nanofluids over traditional heat transfer fluids. In addition, the upswing suspension of the motile gyrotactic microorganisms improves the hybrid nanofluid stability, enhancing the performance of the solar collector. The use of solar energy reduces the industry’s dependency on fossil fuels.
Details
Keywords
Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen
For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…
Abstract
Purpose
For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.
Design/methodology/approach
Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.
Findings
It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.
Originality/value
The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.