Search results

1 – 10 of 22
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 August 1997

J. Rasoul and P. Prinos

The effect of inclination on laminar natural convection in a square cavity is studied numerically for inclination angles ranging from 40° to 160°, Rayleigh numbers between 103 and…

859

Abstract

The effect of inclination on laminar natural convection in a square cavity is studied numerically for inclination angles ranging from 40° to 160°, Rayleigh numbers between 103 and 106 and Prandtl numbers from 0.02 to 4,000. Contours of stream functions and temperature are presented in order to provide a new insight and a better understanding of the flow and heat transfer characteristics in a square cavity. Finds computed local and mean Nusselt numbers at the hot wall in satisfactory agreement with experimental and other numerical results. Finds the mean heat flux at the hot wall as well as the distribution of the local heat flux along the heated wall are found to depend on the inclination angle, the Rayleigh number and the Prandtl number. Such a dependence is significant for angles greater than 90°, while for smaller angles the effect of the inclination angle on the Nusselt‐Rayleigh correlation is weaker.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 4 September 2017

Santiago Francisco Corzo, Damian Enrique Ramajo and Norberto Marcelo Nigro

The purpose of this paper is to assess the Boussinesq approach for a wide range of Ra (10 × 6 to 10 × 11) in two-dimensional (square cavity) and three-dimensional (cubic cavity…

134

Abstract

Purpose

The purpose of this paper is to assess the Boussinesq approach for a wide range of Ra (10 × 6 to 10 × 11) in two-dimensional (square cavity) and three-dimensional (cubic cavity) problems for air- and liquid-filled domains.

Design/methodology/approach

The thermal behavior in “differentially heated cavities” filled with air (low and medium Rayleigh) and water (high Rayleigh) is solved using computational fluid dynamics (CFDs) (OpenFOAM) with a non-compressible (Boussinesq) and compressible approach (real water properties from the IAPWS database).

Findings

The results from the wide range of Rayleigh numbers allowed for the establishment of the limitation of the Boussinesq approach in problems where the fluid has significant density changes within the operation temperature range and especially when the dependence of density with temperature is not linear. For these cases, the symmetry behavior predicted by Boussinesq is far from the compressible results, thus inducing a transient heat imbalance and leading to a higher mean temperature.

Research limitations/implications

The main limitation of the present research can be found in the shortage of experimental data for very high Rayleigh problems.

Practical implications

Practical implications of the current research could be use of the Boussinesq approach by carefully observing its limitations, especially for sensible problems such as the study of pressure vessels, nuclear reactors, etc.

Originality/value

The originality of this paper lies in addressing the limitations of the Boussinesq approach for high Rayleigh water systems. This fluid is commonly used in numerous industrial equipment. This work presents valuable conclusions about the limitations of the currently used models to carry out industrial simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 7 February 2020

Ali S. Alshomrani, S. Sivasankaran and Amer Abdulfattah Ahmed

This study aims to deal the numerical simulation on buoyant convection and energy transport in an inclined cubic box with diverse locations of the heater and coolers.

101

Abstract

Purpose

This study aims to deal the numerical simulation on buoyant convection and energy transport in an inclined cubic box with diverse locations of the heater and coolers.

Design/methodology/approach

The left/right walls are cooled partially whereas the other walls are kept adiabatic. In the left/right walls, three different locations of the cooler are examined, whereas heater moves in three locations in the middle of the enclosed box. The governing models are numerically solved using the finite-element method.

Findings

The simulations are done on several values of the Rayleigh number and cavity inclination angles and different locations of the heater and coolers. The results are presented in the form of streamlines, isosurfaces and Nusselt numbers for different values of parameter involved here. It is recognized that the inclination of the box and the locations of the coolers strongly influence the stream and energy transport inside the enclosed domain.

Research limitations/implications

The present investigation is conducted for steady, laminar, three-dimensional natural convective flow in a box for different locations of cooler and tilting angles of a cavity. The study might be useful to the design of solar collectors, room ventilation systems and electronic cooling systems.

Originality/value

This work examines the effects of different locations of cooler and tilting angles of a cavity on convective heat transfer in a 3D cavity. The study is useful for thermal engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 7 June 2013

Ö. Türk and M. Tezer‐Sezgin

The purpose of the paper is to obtain finite element method (FEM) solution of steady, laminar, natural convection flow in inclined enclosures in the presence of an oblique…

320

Abstract

Purpose

The purpose of the paper is to obtain finite element method (FEM) solution of steady, laminar, natural convection flow in inclined enclosures in the presence of an oblique magnetic field. The momentum equations include the magnetic effect, and the induced magnetic field due to the motion of the electrically conducting fluid is neglected. Quadratic triangular elements are used to ensure accurate approximation for second order derivatives of stream function appearing in the vorticity equation.

Design/methodology/approach

Governing equations in terms of stream function and vorticity are solved by FEM using quadratic triangular elements. Vorticity boundary conditions are obtained through Taylor series expansion of stream function equation by using more interior stream function values to improve the accuracy. Isothermally heated or cooled and/or adiabatic conditions for the temperature are imposed. Results are obtained for Rayleigh number values and Hartmann number values up to 1000000 and 100, respectively.

Findings

It is observed that streamlines form a thin boundary layer close to the heated walls as Ha increases. The same effect is seen in the vorticity contours, and isotherms are not affected much. As Ra increases streamlines are deformed moving from the heated walls through cooled walls. Vorticity starts to develop boundary layers close to heated and adjacent walls. Isotherms are pushed towards the sinusoidally heated wall whereas in the case of linearly heated left and bottom walls they expand towards cooled part of the cavity as Ra increases.

Originality/value

The application of FEM with quadratic elements for solving natural convection flow problem under the effect of a magnetic field is new in the sense that the results are obtained for large values of Rayleigh and Hartmann numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 28 February 2023

Sivasankaran Sivanandam and Bhuvaneswari Marimuthu

The numerical analysis is to scrutinize the collective effect of convective current along with the thermal energy transport in an inclined lid-driven square chamber with sine…

90

Abstract

Purpose

The numerical analysis is to scrutinize the collective effect of convective current along with the thermal energy transport in an inclined lid-driven square chamber with sine curve based temperature at the lower wall in the existence of unchanging external magnetic field. Insulation has been placed on the left and right of the box to increase the effective space volume of the shell. The thermal condition at ceiling wall is kept lower than the one on the floor.

Design/methodology/approach

The finite volume method employs to discretize (non-dimensional) system of equations govern the model. The heat transfer rate is measured by adjusting various variables, such as the Richardson number Hartmann number, inclination of an enclosure.

Findings

The flow behavior of enclosure convection is more highly influenced within the natural convection when enclosure inclination varies as well as magnetic field strength. The overall heat transfer rate decreases due to increase in both the Hartmann number as well as Richardson number.

Practical implications

The results of the present study are very useful to the cooling of electronic equipments.

Social implications

The study model is useful to the thermal science community and modelling field.

Originality/value

This research is a novel work on mixed convection flow in an inclined chamber with sinusoidal heat source.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 4 January 2013

Fausto Arpino, Nicola Massarotti, Alessandro Mauro and Perumal Nithiarasu

The purpose of the paper is to numerically simulate steady‐state thermo‐solutal convection in rectangular cavities with different aspect ratios, subject to horizontal temperature…

271

Abstract

Purpose

The purpose of the paper is to numerically simulate steady‐state thermo‐solutal convection in rectangular cavities with different aspect ratios, subject to horizontal temperature and concentration gradients, and validate the results against numerical and experimental data available from literature.

Design/methodology/approach

The fully explicit Artificial Compressibility (AC) version of the Characteristic Based Split (CBS) scheme is adopted to solve double diffusion (DD) problems. A stabilization analysis is carried out to efficiently solve the problems considered in the present work. The thermal and solutal buoyancy forces acting on the fluid have been taken into account in case of aiding and opposing flow conditions.

Findings

The stability limits derived by the authors for the thermo‐solutal convection assume a fundamental role to efficiently solve the DD problems considered. In the cases characterized by higher Rayleigh number the convergent solution is obtained only by employing the new stability conditions. The efficient matrix free procedure employed is a powerful tool to study complex DD problems.

Originality/value

In this paper, the authors extend the stabilization analysis for the AC‐CBS scheme to the solution of DD, fundamental to efficiently solve the present problems, and apply the present fully explicit matrix free scheme, based on finite elements, to the solution of DD natural convection in cavities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 8 October 2018

Purushothaman Pichandi and Satheesh Anbalagan

The purpose of this paper is to propose an effective numerical approach for solving the natural convection in a two-dimensional square enclosure by using the single relaxation…

131

Abstract

Purpose

The purpose of this paper is to propose an effective numerical approach for solving the natural convection in a two-dimensional square enclosure by using the single relaxation time-Bhatnagar, Gross and Krook (SRT-BGK) model (D2Q9) and lattice Boltzmann method (LBM).

Design/methodology/approach

Navier–Stroke equation is replaced by lattice Boltzmann method, and the numerical approach was simulated using LBM. LBM is a linear equation so, it reduces the computational time. The governing equations are solved using the SRT-BGK model. To achieve better numerical stability and accuracy, the momentum and energy equations are solved using two-dimensional nine-directional (D2Q9) lattice arrangement.

Findings

The results are presented at different convection mechanism with constant Prandtl number = 0.71, and the result is validated with reported literature. Numerical investigation is performed and accurate results are obtained; the range of Pr = 0.71, various Rayleigh number, phase change, periodicity parameter and amplitude ratio with three different blockage ratios. The present study is performed using LBM.

Research limitations/implications

To extend this work, the influence of natural convection, various selections of Prandtl number and Rayleigh number, periodicity and the effect of aspect ratio with mounted number of blockages could be included.

Practical implications

This research article will be useful for the study of fluid flow and heat transfer in hot and cold fluid interaction over the solid object. Like gear hardening with various sizes of gear blocks, material processing with hot and cold fluid interactions inside the furnace wall, solar panels high and low density fluid variation, indoor hot and cold fluid thermal environments, inside nuclear reactors heat and heavy water fluid interaction, cooling of electronic equipments and various chemical engineering applications.

Social implications

This paper will be useful for studying fluid flow and heat transfer within a square enclosure, and it gives practical information in engineering and heat transfer applications.

Originality/value

The present work is the first to investigate using LBM for selected parameters to apply a natural convection with imposed sinusoidal wave for different convection mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2014

Sofen K. Jena, Swarup K. Mahapatra and Amitava Sarkar

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a…

188

Abstract

Purpose

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a tilted enclosure under an externally imposed time-independent uniform magnetic field.

Design/methodology/approach

The differentially heated boundaries of the tilted enclosure are considered to be diffuse, gray and the enclosed fluid is assumed to be absorbing, emitting and isotropically scattering. The Navier-Stokes equations, meant for magneto convection are solved using modified MAC method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation, is used to model radiative transport equation in the presence of radiatively active medium.

Findings

Effect of uniform magnetic field with different magnitudes and orientations of cavity has been numerically simulated. The effect of participating media radiation has been investigated for different optical thicknesses, emissivities, scattering albedos and Planks number. The results are provided in both graphical and tabular forms. The flow lines, isotherms bring clarity in the understanding of flow behaviour and heat transfer characteristics.

Originality/value

Despite the idealized nature, the present study is quite essential to understand the cumbersome physics of realistic problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 9 November 2012

Theodosios Theodosiou, Stavros Valsamidis, Georgios Hatziliadis and Michael Nikolaidis

A huge amount of data are produced in the agriculture sector. Due to the huge number of these datasets it is necessary to use data analysis techniques in order to comprehend the…

388

Abstract

Purpose

A huge amount of data are produced in the agriculture sector. Due to the huge number of these datasets it is necessary to use data analysis techniques in order to comprehend the data and extract useful information. The purpose of this paper is to measure, archetype and mine olea europaea production data.

Design/methodology/approach

This work applies three different data mining techniques to data about Olea europaea var. media oblonga from the island of Thassos, at the northern part of Greece. The data were from 1,063 farmers from three different municipalities of Thassos, namely Kallirachi, Limenaria and Prinos and concerned the year 2010. They were analysed using the classification algorithm OneR, the clustering algorithm k‐means and the association rule mining algorithm, Apriori from the WEKA data mining package. Also, new measures which quantify the performance of the productions of olives and oil are applied. Finally, archetypal analysis is applied in order to distinguish the most typical/stereotype farms for each region and describe their specific characteristics.

Findings

The results indicate that organic cultivation could improve the production of olives and olive oil. Furthermore, the climate differences among the three municipalities seems to be a factor involved in production efficacy.

Originality/value

It is the first time that data from the island of Thassos have been analysed systematically using a variety of data mining methods. Also, the measures proposed in the paper in order to analyse the data are new. Furthermore, archetypal analysis is proposed as a method to extract sterotypes/representative farms from the dataset.

Details

Journal of Systems and Information Technology, vol. 14 no. 4
Type: Research Article
ISSN: 1328-7265

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2004

D.Z. Seker, A. Tanik, M. Gurel, A. Ekdal, A. Erturk, S. Kabdasli and A. Aydingakko

This paper presents part of the results of ongoing integrated and interdisciplinary studies conducted at a vulnerable coastal lagoon system with the aim of protecting it from…

730

Abstract

This paper presents part of the results of ongoing integrated and interdisciplinary studies conducted at a vulnerable coastal lagoon system with the aim of protecting it from further anthropogenic pollution. The target area is in southwestern Turkey, consisting of a lake that joins the Mediterranean Sea via a lagoon channel system. Land resources in the watershed are identified, including all the elements of the physical environment that influence potential land‐use, and are illustrated by the application of geographical information systems through mapping and visualization of various thematic layers of land. This study will enlighten those working on lagoon watersheds aiming at conservation of natural resources since it states the results of the studies conducted so far through various disciplines, and presents how data are utilized by the groups in an integrated manner. Based on the available data, pre‐modelling studies on hydrodynamic modelling and on water quality modelling are also referred. Identification of a watershed depends on gathering satisfactory data, which will further be used to establish sustainable development and management plans, apart from utilizing the obtained data for watershed and hydrodynamic modelling approaches and to better understand such complex systems.

Details

Management of Environmental Quality: An International Journal, vol. 15 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of 22
Per page
102050