Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 December 2017

Hasan Celik, Moghtada Mobedi, Oronzio Manca and Unver Ozkol

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under…

285

Abstract

Purpose

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under mixed convection heat transfer.

Design/methodology/approach

The continuity, momentum and energy equations are solved in dimensionless form for a representative elementary volume of porous media, numerically. The velocity and temperature fields for different values of porosity, Ri and Re numbers are obtained. The study is performed for the range of Ri number from 0.01 to 10, Re number from 100 to 500 and porosity value from 0.51 to 0.96. Based on the obtained results, the value of the interfacial convective heat transfer coefficient is calculated by using volume average method.

Findings

It was found that at low porosities (such as 0.51), the interfacial Nusselt number does not considerably change with Ri and Re numbers. However, for porous media with high Ri number and porosity (such as 10 and 0.51, respectively), secondary flows occur in the middle of the channel between rods improving heat transfer between solid and fluid, considerably. It is shown that the available correlations of interfacial heat transfer coefficient suggested for forced convection can be used for mixed convection for the porous media with low porosity (such as 0.51) or for the flow with low Ri number (such as 0.01).

Originality/value

To the best of the authors’ knowledge, there is no study on determination of interfacial convective heat transfer coefficient for mixed convection in porous media in literature. The present study might be the first study providing an accurate idea on the range of this important parameter, which will be useful particularly for researchers who study on mixed convection heat transfer in porous media, macroscopically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 21 September 2010

Assunta Andreozzi, Bernardo Buonomo and Oronzio Manca

The purpose of this paper is to evaluate the thermal and fluid dynamic behaviors of natural convection in a vertical channel‐chimney system heated symmetrically at uniform heat…

408

Abstract

Purpose

The purpose of this paper is to evaluate the thermal and fluid dynamic behaviors of natural convection in a vertical channel‐chimney system heated symmetrically at uniform heat flux in order to detect the different fluid motion structures inside the chimney, such as the cold inflow from the outlet section of the chimney and the reattachment due to the hot jet from the channel, for different extension and expansion ratios of the adiabatic extensions.

Design/methodology/approach

The model is constituted by two‐dimensional steady‐state fully elliptic conservation equations which are solved numerically in a composite three‐part computational domain by means of the finite‐volume method.

Findings

Stream function and temperature fields in the system are presented in order to detect the different fluid motion structures inside the chimney, for different extension and expansion ratios of the adiabatic extensions. The analysis allows to evaluate the effect of the channel aspect ratio on the thermal and fluid dynamic behaviors on a channel‐chimney system and thermal and geometrical conditions corresponding to a complete downflow. Guidelines to estimate critical conditions related to the beginning of flow separation and complete downflow are given in terms of order of magnitude of Rayleigh and Froude numbers.

Research limitations/implications

The hypotheses on which the present analysis is based are: two‐dimensional, laminar and steady‐state flow, constant thermophysical properties with the Boussinesq approximation. The investigation is carried out in the following ranges: from 100 to 100,000 for the Rayleigh number, from 5.0 to 20 for the aspect ratio, from 1.0 to 4.0 for the expansion ratio and from 1.5 to 4 for the extension ratio.

Practical implications

Thermal design of heating systems in different technical fields, such as in electronic cooling and in building ventilation and houses solar components, evaluation of heat convective coefficients and guidelines to estimate critical conditions related to the beginning of flow separation and complete downflow.

Originality/value

The paper is useful to thermal designers because of its evaluation of the thermal and velocity fields, correlation for the Nusselt number and guidelines criteria in terms of Rayleigh and Froude numbers to evaluate conditions of flow separation and complete downflow in natural convection in air for vertical channels‐chimney systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2002

Assunta Andreozzi, Oronzio Manca and Vincenzo Naso

Research on natural convection in open channels is very extensive due to its role in many engineering applications such as thermal control of electronic systems. In this paper, a…

491

Abstract

Research on natural convection in open channels is very extensive due to its role in many engineering applications such as thermal control of electronic systems. In this paper, a parametric analysis is carried out in order to add knowledge of heat transfer in air natural convection for a symmetrically heated vertical parallel plate channel with a central auxiliary heated or adiabatic plate. The two‐dimensional steady‐state problem is solved by means of the stream function–vorticity approach and the numerical solution is carried out by means of the control volume method. Results are obtained for both a heated and unheated auxiliary plate, for a Rayleigh number in the range 103–106, for a ratio of the auxiliary plate height to the channel plate height equal to 0, 0.5 and 1 and for a ratio of the channel length to the channel gap in the range 5–15. Correlations for maximum wall temperatures and average channel Nusselt numbers are proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 14 June 2011

Oronzio Manca, Sergio Nardini and Daniele Ricci

The purpose of this paper is to investigate the flow and the heat transfer characteristics of a two‐dimensional rib‐roughned rectangular duct with the two principal walls…

471

Abstract

Purpose

The purpose of this paper is to investigate the flow and the heat transfer characteristics of a two‐dimensional rib‐roughned rectangular duct with the two principal walls subjected to uniform heat flux. In particular, the main goal is to generate friction and heat transfer data, for different values of p/e with square, rectangular, trapezoidal and triangular shape ribs for Reynolds numbers in the range between 20,000 and 60,000 and different heights and to describe the temperature and fluid‐dynamic fields around the ribs.

Design/methodology/approach

The model is constituted by a two‐dimensional duct. On the duct wall square, rectangular, triangular and trapezoidal ribs are introduced by changing different geometry ratios. Governing equations are solved numerically by means of the finite‐volume method.

Findings

Simulations show that maximum Nusselt numbers are detected in correspondence with dimensionless pitch equal to 12 and 10 for the square, trapezoidal and rectangular ribs, and triangular ones, respectively. Heat transfer rate is at most 2.45 times higher than the smooth duct, when dimensionless height is equal to 0.05, and 1.85 at a dimensionless height equal to 0.02; furthermore, the friction factor is the highest at a pitch ratio of ten for the rectangular, trapezoidal and square ribs while the triangular ones show the maximum values at a dimensionless pitch equal to 8. For Re>40,000 an asymptotic behavior is detected. Best thermal performances are provided by triangular ribs with w/e=2.0 while the rectangular ribs with w/e=2.0 present the lowest friction factor values. Local Nusselt number profiles reveal that the maximum values are detected from three to five times the rib height from the downstream turbulator. Finally, temperature fields and stream function contours are given in order to visualize the temperature distribution and flow pattern in presence of d‐type and k‐type roughness behavior also for triangular ribs.

Originality/value

The paper investigates evaluation of temperature and velocity fields thermal and fluid‐dynamic behaviors (in terms of average and local Nusselt number profiles and friction factors ones) of roughned ducts with different shapes, heights and aspect ratios of ribs in turbulent regime. The thermo‐physical properties of fluid are assumed to be dependent on temperature. The paper is useful to thermal designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4
Per page
102050