Search results

1 – 1 of 1
Article
Publication date: 27 August 2024

Mohammad Hossein Hamzezadeh Nakhjavani, Faradjollah Askari and Orang Farzaneh

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before…

Abstract

Purpose

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before the stabilization of the excavation wall. This study aims to investigate the correlation between excavation height and foundation-bearing capacity under actual field conditions.

Design/methodology/approach

This paper uses a three-dimensional rotational failure mechanism to propose a novel method for estimating foundation-bearing capacity using the upper bound limit analysis approach.

Findings

The study delineates two distinct zones in the excavation height versus bearing capacity diagram. Initially, there is a significant reduction in foundation-bearing capacity at the onset of excavation, with decreases of up to 80% compared to its undisturbed state. Within a specific range of excavation heights, the bearing capacity remains relatively constant until reaching a critical height. Beyond this threshold, the entire soil mass behind the excavation wall becomes unstable. The critical excavation height is notably influenced by the soil's internal friction angle, excavation slope angle and soil cohesion parameter. Notably, when the ratio of excavation height to foundation width is less than 0.4, changes in slope angle have no significant impact on bearing capacity.

Originality/value

The bearing capacity estimates derived from the method proposed in this paper are deemed to reflect real-world scenarios closely compared to existing methodologies.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 1 of 1