Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 31 May 2019

Christian Mauricio Cobos, Luis Garzón, Juan López Martinez, Octavio Fenollar and Santiago Ferrandiz

This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and…

481

Abstract

Purpose

This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological conditions with multi-wall carbon nanotube (PLA/MWCNT) and halloysite nanotube (PLA/HNT) composites for possible applications in additive manufacturing processes.

Design/methodology/approach

PLA/MWCNTs and PLA/HNTs were obtained through fusion in a co-rotating twin-screw extruder. PLA was mixed with different percentages of MWCNTs and HNTs at concentrations of 0.5 Wt.%, 0.75 Wt.% and 1 Wt.%. Differential scanning calorimetry (DSC) and capillary rheometry were used to characterise these products, together with an analysis of the melt flow index (MFI).

Findings

The DSC data revealed that the nanocomposites had a glass transition temperature Tg = 65 ± 2°C and a melting temperature Tm = 169 ± 1°C. The crystallisation temperature of PLA/MWCNTs and PLA/HNTs was between 107 ± 2°C and 129°C, respectively. The viscosity data of PLA/MWCNTs and PLA/HNTs obtained by capillary rheometry indicated that the viscosity of the materials is the same as that of neat PLA. These results were confirmed by the higher fluidity index in the MFI analysis.

Originality/value

This paper presents an alternative for the applications of nanocomposites in additive manufacturing processes in FDM systems.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Available. Open Access. Open Access
Article
Publication date: 27 April 2020

Christian Mauricio Cobos, Octavio Fenollar, Juan López Martinez, Santiago Ferrandiz and Luis Garzón

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic…

1433

Abstract

Purpose

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic acid/multi-walled carbon nanotubes) and PLA/HNT (halloysite nanotubes) nanocomposites, as a reference for application in 3D printing processes.

Design/methodology/approach

Nanocomposites were obtained by melting in a twin-screw extruder, mixing PLA with MWCNTs and HNTs in different percentages of 0.5, 0.75 and 1 Wt.% for subsequent mixing by the same process with 5 phr MLO, for application in additive manufacturing, as analyzed by means of differential scanning calorimetry (DSC), capillary rheometry, melt flow rate (MFL) and field emission scanning electron microscopy (FESEM).

Findings

The results obtained for thermal characterization by using DSC indicate the non-variation of glass transition temperature Tg = 62 ± 2°C and a melting temperature (Tm) around 170°C. Crystallization temperature dropped by approximately 12°C, which should be kept in mind during the transformation processes. The values obtained by capillary rheometry indicate that the material’s viscosity is reduced by the influence of the MLO plasticizer’s lubricant effect on the PLA’s molecular structure. The melt flow index values confirm a rise of approximately 46% in the flow index and back up the capillary rheometry results. The values obtained were as follows: PLA/0.5 Wt.% MWCNT/MLO 5 phr 54.07, PLA/0.75 Wt.% MWCNT/MLO 5 phr 53.46, PLA/1 Wt.% MWCNT/MLO 5 phr 51.84y PLA/0.5 Wt.% HNT/MLO 5 phr 61.8, PLA/0.75 Wt.% HNT/MLO 5 phr 68.3 and PLA/1 Wt.% HNT/MLO 5 phr 71.2 g/10 min. Apart from the nanocharge distribution, the information obtained from the FESEM shows the existence of a cluster, which could have been avoided by more energetic stirring during the nanocompound manufacturing process.

Social implications

This paper presents an analysis of the insertion of plasticizer in nanocomposites for the application in additive manufacturing processes in fusion deposition modelling (FDM) system.

Originality/value

This is a novel original research work.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050