S. Kiwan and O. Zeitoun
The aim is to study the effects of fin conductivity ratio, Darcy number, and Rayleigh number on the average Nusselt number for fins made of porous material when attached to the…
Abstract
Purpose
The aim is to study the effects of fin conductivity ratio, Darcy number, and Rayleigh number on the average Nusselt number for fins made of porous material when attached to the inner cylinder of the annulus between two concentric cylinders. The paper also aims to compare the results with those obtained using solid fins over a range of Rayleigh numbers.
Design/methodology/approach
The Darcy‐Brinkman equations were used to model the fluid flow inside the porous media and the Boussinesq approximation was used to model the buoyancy effect. The energy equation is also solved to find the temperature distribution in the domain of interest. The model equations are solved numerically using a finite volume code.
Findings
Porous fins provided higher heat transfer rates than solid fins for similar configurations. This enhancement in heat transfer reached 75 per cent at Ra=5 × 104 and Da=2.5 × 10−2. It is also found that unlike solid fins the rate of heat transfer from the cylinder equipped with porous fins decreases with increasing the fin inclination angle.
Research limitations/implications
The range of the Rayleigh number considered in this research covers only the laminar regime. The research does not cover turbulent flows. In addition to that, the local thermal equilibrium assumption is used.
Practical implications
This work can help designers in selecting the proper material properties and operating conditions in designing porous fins to enhance the heat transfer in the annulus between two horizontal concentric cylinders under natural convection condition.
Originality/value
This work has not been done before and it can initiate additional research projects as looking at the performance of porous fins under other conditions and configurations (e.g. turbulent conditions).
Details
Keywords
Varinder Kumar and Santosh Bopche
This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver…
Abstract
Purpose
This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver (hemispherical-shaped).
Design/methodology/approach
The numerical models were evolved based on two types of boundary conditions; isothermal receiver surface and non-isothermal receiver surface. For validation of the numerical models with experimental results, three statistical terms were used: mean of absolute deviation, R2 and root mean square error.
Findings
The thermal efficiency of the receiver values obtained using the numerical model with a non-isothermal receiver surface found agreeing well with experimental results. The numerical model with non-isothermal surface boundary condition exhibited more accurate results as compared to that with isothermal surface boundary condition. The receiver heat loss analysis based on the experimental outcomes is also carried out to estimate the contributions of various modes of heat transfer. The losses by radiation, convection and conduction contribute about 27.47%, 70.89% and 1.83%, in the total receiver loss, respectively.
Practical implications
An empirical correlation based on experimental data is also presented to anticipate the effect of studied parameters on the receiver collection efficiency. The anticipations may help to adopt the technology for practical use.
Social implications
The developed models would help to design and anticipating the performance of the dish concentrator system with a modified cavity receiver that may be used for applications e.g. power generation, water heating, air-conditioning, solar cooking, solar drying, energy storage, etc.
Originality/value
The originality of this manuscript comprising presenting a differential-mathematical analysis/modeling of hemispherical shaped modified cavity receiver with non-uniform surface temperature boundary condition. It can estimate the variation of temperature of heat transfer fluid (water) along with the receiver height, by taking into account the receiver cavity losses by means of radiation and convection modes. The model also considers the radiative heat exchange among the internal ring-surface elements of the cavity.
Details
Keywords
A.S. Dogonchi, F. Selimefendigil and D.D. Ganji
The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control…
Abstract
Purpose
The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method.
Design/methodology/approach
Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with the Koo–Kleinstreuer–Li correlation for the effective dynamic viscosity and the effective thermal conductivity have been solved numerically by control volume finite element method.
Findings
Effects of various pertinent parameters such as Rayleigh number, Hartmann number, volume fraction of nanofluid and shape factor of nanoparticle on the convective heat transfer characteristics are analysed. It was observed that local and average heat transfer rates increase for higher value of Rayleigh number and lower value of Hartmann number. Among various nanoparticle shapes, platelets were found to be best in terms of heat transfer performance. The amount of average Nusselt number reductions was found to be different when nanofluids with different solid particle volume fractions were considered due to thermal and electrical conductivity enhancement of fluid with nanoparticle addition.
Originality/value
A comprehensive study of the natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method is addressed.
Details
Keywords
P. Saikrishnan, Satyajit Roy, H.S. Takhar and R. Ravindran
The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in…
Abstract
Purpose
The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in a stably thermally stratified medium.
Design/methodology/approach
An implicit finite‐difference scheme in combination with the quasi‐linearization technique is applied to obtain the steady state non‐similar solutions of the governing boundary layer equations for flow and temperature fields.
Findings
The numerical results indicate that the heat transfer rate at the wall decreases significantly with an increasing thermal stratification parameter, but its effect on the skin friction coefficients is rather minimum. In fact, the presence of thermal stratification of the medium influences the heat transfer at wall to be in opposite direction, that is, from fluids to the wall above a certain height. The heat transfer rate increases but the skin frictions decrease with the increase of Prandtl number. In particular, the effect of buoyancy force is much more sensitive for low Prandtl number fluids (Pr = 0.7, air) than that of high Prandtl number fluids (Pr = 7, water). Also the skin friction in rotating direction is less sensitive to the buoyancy force as the buoyancy force acts in the streamwise direction for the present study of thermally stratified medium.
Research limitations/implications
The ambient temperature T∞∞ is assumed to increase linearly with height $h$. The viscous dissipation term, which is usually small for natural convection flows, has been neglected in the energy equation. The flow is assumed to be axi‐symmetric. The Boussinesq approximation is invoked for the fluid properties to relate density changes to temperature changes, and to couple in this way the temperature field to the flow field.
Practical implications
Free convection in a thermally stratified medium occurs in many environmental processes with temperature stratification, and in industrial applications within a closed chamber with heated walls. Also, free convections associated with heat rejection systems for long‐duration deep ocean powder modules where ocean environment is stratified are examples of such type.
Originality/value
The research presented in this paper investigates the free convection flow on a sphere, which is rotating with a constant angular velocity along its vertical axis in a stably thermally stratified fluid.
Details
Keywords
J. Vuillon and D. Zeitoun
High‐power chemical lasers operating in high repetitive rate show a decrease of the output energy laser beam. In such lasers, the characteristic time which depends on the laser…
Abstract
High‐power chemical lasers operating in high repetitive rate show a decrease of the output energy laser beam. In such lasers, the characteristic time which depends on the laser output is short in comparison with those related to the flow. Consequently, shock waves, acoustic waves and thermal perturbations, induced by the strong electric energy deposition and remaining in the laser cavity between two pulses, may explain the decrease of output energy of the laser beam. For a better understanding of the flowfields, a numerical approach is carried out using flux corrected transport algorithms (FCT methods) associated with a Riemann solver on the computational domain boundaries. Under two‐dimensional assumptions, the inviscid flow in the convergent‐divergent laser cavity is computed to describe the creation and propagation of the wave system and the hot gas column in both single and multidischarge operating modes. Distortions of the contact surfaces are put into evidence through the study of flowfield instabilities. Finally, the limitations of the two‐dimensional modelization become apparent. The numerical resolution is extended to a 3D case in order to take into account the optical direction. This allows to study the influence of shock waves travelling between optics and being generated by a side effect developing at the electrodes. These waves have an effect of long duration on the flowfield and lead to a high residual perturbation level.
Details
Keywords
Mahyar Ashouri, Mohammad Mehdi Zarei and Ali Moosavi
The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal…
Abstract
Purpose
The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver.
Design/methodology/approach
Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other.
Findings
It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing.
Originality/value
The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.
Details
Keywords
Debayan Das, Leo Lukose and Tanmay Basak
The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles…
Abstract
Purpose
The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles triangle) subjected to discrete heating with various locations of double heaters along the vertical (square) or inclined (triangular) arms.
Design/methodology/approach
Galerkin finite element method is used to solve the governing equations for a wide range of modified Darcy number, Dam = 10−5–10−2 with various fluid saturated porous media, Prm = 0.015 and 7.2 at a modified Rayleigh number, Ram = 106 involving the strategic placement of double heaters along the vertical or inclined arms (types 1-3). Adaptive mesh refinement is implemented based on the lengths of discrete heaters. Finite element based heat flow visualization via heatlines has been adopted to study heat distribution at various portions.
Findings
The strategic positioning of the double heaters (types 1-3) and the convective heatline vortices depict significant overall temperature elevation at both Dam = 10−4 and 10−2 compared to type 0 (single heater at each vertical or inclined arm). Types 2 and 3 are found to promote higher temperature uniformity and greater overall temperature elevation at Dam = 10−2. Overall, the triangular design 2 geometry is also found to be optimal in achieving greater temperature elevation for the porous media saturated with various fluids (Prm).
Practical implications
Multiple heaters (at each side [left or right] wall) result in enhanced temperature elevation compared to the single heater (at each side [left or right] wall). The results of the current work may be useful for the material processing, thermal storage and solar heating applications.
Originality/value
The heatline approach is used to visualize the heat flow involving double heaters along the side (left or right) arms (square and triangular geometries) during natural convection involving porous media. The heatlines depict the trajectories of heat flow that are essential for thermal management involving larger thermal elevation. The mixing cup or bulk average temperature values are obtained for all types of heating (types 0-3) involving all geometries, and overall temperature elevation is examined based on higher mixing cup temperature values.
Details
Keywords
Yazhou Wang, Guoliang Qin, Ximeng Ye and Zhenzhong Bao
The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous…
Abstract
Purpose
The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous enclosure with three adiabatic thin baffles of different lengths in nine cases and analyze the effects of several parameters.
Design/methodology/approach
The authors develop an improved time-splitting method to solve the Darcy–Brinkman–Forchheimer model. No extra assumptions are introduced for the intermediate velocity, and the final velocity field satisfies the incompressible constraint strictly compared with the classical method. The governing equations are split into a pure convection problem, a Stokes problem and a thermal diffusion problem. The least-squares variation is adopted for the Stokes problem, and the Galerkin variation is used for the other two problems, such that the pressure and velocity can be discretized with the same interpolation order, which benefits the numerical accuracy and program design.
Findings
Regarding the method, the excellent spectral accuracy, the capability of discretizing complex computational regions and the improved time-splitting methods make SEM an effective tool to accurately predict the non-Darcy convective heat transfer; as for the numerical tests, it is observed that weakened convection and heat transfer are induced by the increasing length of the baffles. The flow and heat transfer in channel 1 is only related to the length of baffle 1 because of the downward-driven right sidewall, and it is more difficult for baffle 3 to form the secondary flow on its tip.
Originality/value
A novel numerical framework for Darcy–Brinkman–Forchheimer model is developed, expanding the application of SEM for simulating non-Darcy convective heat transfer to improve the numerical accuracy. Numerical results and analysis for flow and heat fields could help designers understand the control of heat transfer using adiabatic baffles better.
Details
Keywords
Alicia J. Ferrara, Peter G. Stillman and Adelaide H. Villmoare
Purpose – This study examines the legal system's responses to the disaster of Hurricane Katrina and the flooding of New Orleans particularly in the first two weeks after the…
Abstract
Purpose – This study examines the legal system's responses to the disaster of Hurricane Katrina and the flooding of New Orleans particularly in the first two weeks after the storm. During this period, issues of law and order were a primary concern of government decision makers, and these issues framed those of rescue of and aid to the survivors.
Approach – The chapter draws on the analytic concept of the carceral state as it is publicly displayed in official reactions to disaster rumors of disorder and violence. The empirical focus is on policing activity and on events at the Orleans Parish Prison and Camp Greyhound, a temporary detention center established after the storm.
Findings – Largely unfounded rumors of disorder, including roaming gangs, extensive looting, rape, and murder, fueled the emphasis on law and order and policing and carceral decisions of officials. Actions intended to facilitate an individual's survival or comfort or evacuation were often treated as criminal. New Orleans became a prison city.
Originality – The analysis develops the concept of a “prison city” as an embodiment of the carceral state and suggests that the carceral state prompts and reinforces rumors about disorder and the tendency to designate policing and incarceration as essential first responses to disasters in the United States.
E. Schall, Y. Burtschell and D. Zeitoun
Non‐equilibrium hypersonic viscous flows with high enthalpyconditions have been computed with an implicit time‐dependentfinite‐difference scheme. This scheme accounts for both…
Abstract
Non‐equilibrium hypersonic viscous flows with high enthalpy conditions have been computed with an implicit time‐dependent finite‐difference scheme. This scheme accounts for both chemical and vibrational non‐equilibrium processes in air flow around a hemispherical cylindrical body. The air was assumed to decompose into the following five species N, O, NO, N2 and O2 and only the two diatomic species N2 and O2 are taken in thermal non‐equilibrium. A range of Mach number from 14 to 18 has been investigated. The numerical results have been compared with those obtained by other workers and are in agreement with ballistic range data concerning the standoff shock distance at M = 15.3. The computed heat flux wall follows the trends of the experiments with an under prediction increasing with the Mach number. The influence of the thermal non‐equilibrium assumption on the computed standoff shock distance is investigated.