Search results
1 – 10 of 86Thameem Basha Hayath, Sivaraj Ramachandran, Ramachandra Prasad Vallampati and O. Anwar Bég
Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many…
Abstract
Purpose
Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of these properties plays a significant role in modifying transport characteristics while the temperature difference in the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical model, motivated by the last of these applications, to explore the impact of variable viscosity and variable thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and appreciable thermal radiative heat transfer under a static radial magnetic field.
Design/methodology/approach
The Williamson pseudoplastic model is deployed for rheology of the nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive validation with earlier studies in the absence of nanoscale and variable property effects is included.
Findings
The influence of notable parameters such as Weissenberg number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on heat, mass and momentum characteristics are scrutinized and visualized via graphs and tables.
Research limitations/implications
Buongiorno (two-phase) nanofluid model is used to express the momentum, energy and concentration equations with the following assumptions. The laminar, steady, incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and hence it is neglected. The Soret and Dufour effects are taken into consideration.
Practical implications
The variable viscosity and thermal conductivity are considered to investigate the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime role in many industries such as petroleum refinement, food and beverages, petrochemical, coating manufacturing, power and environment.
Social implications
This fluid model displays exact rheological characteristics of bio-fluids and industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup and whipped cream.
Originality/value
The outcomes disclose that the Williamson nanofluid velocity declines by enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter. Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale parameter.
Details
Keywords
J.C. Umavathi and O. Anwar Beg
The purpose of this paper is to investigate thermally and hydrodynamically fully developed convection in a duct of rectangular cross-section containing a porous medium and fluid…
Abstract
Purpose
The purpose of this paper is to investigate thermally and hydrodynamically fully developed convection in a duct of rectangular cross-section containing a porous medium and fluid layer.
Design/methodology/approach
The Darcy–Brinkman–Forchheimer flow model is adopted. A finite difference method of second-order accuracy with the Southwell-over-relaxation method is deployed to solve the non-dimensional momentum and energy conservation equations under physically robust boundary conditions.
Findings
It is found that the presence of porous structure and different immiscible fluids exert a significant impact on controlling the flow. Graphical results for the influence of the governing parameters i.e. Grashof number, Darcy number, porous media inertia parameter, Brinkman number and ratios of viscosities, thermal expansion and thermal conductivity parameters on the velocity and temperature fields are presented. The volumetric flow rate, skin friction and rate of heat transfer at the left and right walls of the duct are also provided in tabular form. The numerical solutions obtained are validated with the published study and excellent agreement is attained.
Originality/value
To the author’s best knowledge this study original in developing the numerical code using FORTRAN to assess the fluid properties for immiscible fluids. The study is relevant to geothermal energy systems, thermal insulation systems, resin flow modeling for liquid composite molding processes and hybrid solar collectors.
Details
Keywords
Atul Kumar Ray, Vasu B., O. Anwar Beg, R.S.R. Gorla and P.V.S.N. Murthy
This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting…
Abstract
Purpose
This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting non-Newtonian Casson thin film with uniform thickness over a horizontal elastic sheet emerging from a slit in the presence of viscous dissipation. The composite effects of variable heat, mass, nanoparticle volume fraction and gyrotactic micro-organism flux are considered as is hydrodynamic (wall) slip. The Buongiorno nanoscale model is deployed which features Brownian motion and thermophoresis effects. The model studies the manufacturing fluid dynamics of smart magnetic bio-nano-polymer coatings.
Design/methodology/approach
The coupled non-linear partial differential boundary-layer equations governing the flow, heat and nano-particle and micro-organism mass transfer are reduced to a set of coupled non-dimensional equations using the appropriate transformations and then solved as an nonlinear boundary value problem with the semi-numerical Liao homotopy analysis method (HAM).Validation with a generalized differential quadrature (GDQ) numerical technique is included.
Findings
An increase in velocity slip results in a significant decrement in skin friction coefficient and Sherwood number, whereas it generates a substantial enhancement in Nusselt number and motile micro-organism number density. The computations reveal that the bioconvection Schmidt number decreases the micro-organism concentration and boundary-layer thickness which is attributable to a rise in viscous diffusion rate. Increasing bioconvection Péclet number substantially elevates the temperatures in the regime, thermal boundary layer thickness, nanoparticle concentration values and nano-particle species boundary layer thickness. The computations demonstrate the excellent versatility of HAM and GDQ in solving nonlinear multi-physical nano-bioconvection flows in thermal sciences and furthermore are relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.
Research limitations/implications
The numerical study is valid for two-dimensional, unsteady, laminar Casson film flow with nanoparticles over an elastic sheet in presence of variable heat, mass and nanoparticle volume fraction flux. The film has uniform thickness and flow is transpiring from slit which is fixed at origin.
Social implications
The study has significant applications in the manufacturing dynamics of nano-bio-polymers and the magnetic field control of materials processing systems. Furthermore, it is relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.
Originality/value
The originality of the study is to address the simultaneous effects of unsteady and variable surface fluxes on Casson nanofluid transport of gyrotactic bio-convection thin film over a stretching sheet in the presence of a transverse magnetic field. Validation of HAM with a GDQ numerical technique is included. The present numerical approaches (HAM and GDQ) offer excellent promise in simulating such multi-physical problems of interest in thermal thin film rheological fluid dynamics.
Details
Keywords
Noreen Sher Akbar, O. Anwar Beg and Z.H. Khan
Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials’ manufacturing. The efficient production of such materials combines many physical…
Abstract
Purpose
Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials’ manufacturing. The efficient production of such materials combines many physical phenomena including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To improve the understanding of complex inter-disciplinary transport phenomena in such systems, mathematical models provide a robust approach. Motivated by this, this study aims to develop a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet.
Design/methodology/approach
This study developed a mathematical model for steady, laminar, MHD, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. A uniform constant-strength magnetic field is applied transversely to the stretching flow plane. The Buongiorno nanofluid model is used to represent thermophoretic and Brownian motion effects. A non-Fourier (Cattaneo–Christov) model is used to simulate thermal conduction effects, of which the Fourier model is a special case when thermal relaxation effects are neglected.
Findings
The governing conservation equations are rendered dimensionless with suitable scaling transformations. The emerging nonlinear boundary value problem is solved with a fourth-order Runge–Kutta algorithm and also shooting quadrature. Validation is achieved with earlier non-magnetic and forced convection flow studies. The influence of key thermophysical parameters, e.g. Hartmann magnetic number, thermal Grashof number, thermal relaxation time parameter, Schmidt number, thermophoresis parameter, Prandtl number and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood number and nanoparticle concentration distributions, is investigated.
Originality/value
A strong elevation in temperature accompanies an increase in Brownian motion parameter, whereas increasing magnetic parameter is found to reduce heat transfer rate at the wall (Nusselt number). Nanoparticle volume fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt number and thermophoresis parameter, whereas it is elevated significantly with greater Brownian motion parameter. Higher temperatures are achieved with greater thermal relaxation time values, i.e. the non-Fourier model predicts greater values for temperature than the classical Fourier model.
Details
Keywords
Md. Jashim Uddin, O. Anwar Bég and Izani Md. Ismail
The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical…
Abstract
Purpose
The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical plate in a saturated porous medium taking into account thermal and mass convective boundary conditions numerically.
Design/methodology/approach
The governing equations are reduced to a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The transformed equations are then solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method with Maple 17 and Adomian decomposition method (ADM) in Mathematica.
Findings
The transformed equations are controlled by the parameter: power-law exponent, n; temperature ratio, Tr; Rosseland radiation-conduction, R; conduction-convection, Nc; and diffusion-convection, Nd. Temperature and nanoparticle concentration is enhanced with convection-diffusion parameter as are temperatures. Velocities are depressed with greater power-law rheological index whereas temperatures are elevated. Increasing thermal radiation flux accelerate the flow but to strongly heat the boundary layer. Very good correlation of the Maple solutions with previous stationary free stream and ADM solutions for a moving free stream, are obtained.
Practical implications
The study is relevant to high temperature nano-polymer manufacturing systems.
Originality/value
Lie symmetry group is used for the first time to transform the governing equations into a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The study is relevant to high temperature nano-polymer manufacturing systems.
Details
Keywords
MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid
Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…
Abstract
Purpose
Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.
Design/methodology/approach
Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.
Findings
The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.
Practical implications
The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.
Originality/value
The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.
Details
Keywords
K. Thirumalaisamy and A. Subramanyam Reddy
The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…
Abstract
Purpose
The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.
Design/methodology/approach
The cavity inclination angle is fixed ω = 0 in case (I) and
Findings
The average heat transfer rate is computed for four combinations of ternary nanofluids:
Practical implications
The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.
Social implications
The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.
Originality/value
To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective
Details
Keywords
V. Rajesh, A.J. Chamkha, Ch. Sridevi and A.F. Al-Mudhaf
The purpose of this paper is to study numerically the influence of a magnetic field on the transient free convective boundary layer flow of a nanofluid over a moving semi-infinite…
Abstract
Purpose
The purpose of this paper is to study numerically the influence of a magnetic field on the transient free convective boundary layer flow of a nanofluid over a moving semi-infinite vertical cylinder with heat transfer
Design/methodology/approach
The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. The fluid is a water-based nanofluid containing nanoparticles of copper. The Brinkman model for dynamic viscosity and Maxwell–Garnett model for thermal conductivity are used. The governing boundary layer equations are written according to The Tiwari–Das nanofluid model. A robust, well-tested, implicit finite difference method of Crank–Nicolson type, which is unconditionally stable and convergent, is used to find the numerical solutions of the problem. The velocity and temperature profiles are studied for significant physical parameters such as the magnetic parameter, nanoparticles volume fraction and the thermal Grashof number Gr. The local skin-friction coefficient and the Nusselt number are also analysed and presented graphically.
Findings
The present computations have shown that an increase in the values of either magnetic parameter M or nanoparticle volume fraction decreases the local skin-friction coefficient, whereas the opposite effect is observed for thermal Grashof number Gr. The local Nusselt number increases with a rise in Gr and ϕ values. But an increase in M reduces the local Nusselt number.
Originality/value
This paper is relatively original and presents numerical investigation of transient two-dimensional laminar boundary layer free convective flow of a nanofluid over a moving semi-infinite vertical cylinder in the presence of an applied magnetic field. The present study is of immediate application to all those processes which are highly affected by heat enhancement concept and a magnetic field. Further the present study is relevant to nanofluid materials processing, chemical engineering coating operations exploiting nanomaterials and others.
Details
Keywords
Rouhollah Moosavi, Mehdi Banihashemi and Cheng-Xian Lin
This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.
Abstract
Purpose
This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.
Design/methodology/approach
Heat transfer and pressure drop of fluid flow through a three-dimensional (3D) microchannel with different partially and filled porous media insert configurations are investigated numerically. The number of divisions and positions of porous material inside the microchannel for 12 different arrangements are considered. A control volume method is used for single-phase laminar flow with the Darcy–Forchheimer model used for the porous media. The geometry of the problem consists of a microchannel with a rectangular cross-section of 0.4 mm × 0.2 mm and length 20 mm, with a stainless steel porous material insert with a porosity coefficient of ε = 0.32 and a Darcy number of Da = 2.7 × 10−4.
Findings
Numerical results show that when the transverse arrangement is used, as the number of partitions increases, the thermal performance is improved and the heat transfer increases up to 300% compared to that of the plain microchannel. Comparing the obtained results from the microchannels with transverse and longitudinal configurations, at low Reynolds numbers, the transverse arrangement of porous blocks and at high Reynold numbers, the longitudinal arrangement present the best thermal performance which is virtually four times higher compared to the obtained Nu numbers from the plain microchannel. The results show that as the volume of porous material is constant in the cases with various transverse porous blocks, the pressure drop is not changed in these cases. Also, the highest thermal performance ratio is when the porous material is placed along the walls in a longitudinal direction.
Originality/value
To the best knowledge of the authors, in the previous research, the effect of the arrangement and location of the porous medium in the transverse and longitudinal direction in the microchannel and their effect in different states on the behavior of flow and heat transfer has not been numerically investigated. In this study, the porous media configuration and its placement in a 3D microchannel were numerically studied. The effect of porous material layout and configurations in different longitudinal and transverse directions on the pressure drop, heat transfer and thermal performance in the 3D microchannel is investigated numerically.
Details
Keywords
Sadia Siddiqa, M. Anwar Hossain and Suvash C Saha
The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow…
Abstract
Purpose
The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture.
Design/methodology/approach
The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate.
Findings
The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high.
Originality/value
The results of the study may be of some interest to the researchers of the field of chemical engineers.
Details