Oğuzhan Çalışkan, Talha Sunar and Dursun Özyürek
The paper aims to examine the mechanical and wear performance of A356/Al2O3 (alumina) nanocomposites. The correlation between wear performance and the microstructural properties…
Abstract
Purpose
The paper aims to examine the mechanical and wear performance of A356/Al2O3 (alumina) nanocomposites. The correlation between wear performance and the microstructural properties that result from various mechanical milling periods was investigated.
Design/methodology/approach
The production of nano alumina reinforced (1 Wt.%) A356 aluminum nanocomposite specimens was carried out using the traditional powder metallurgy method, incorporating three different mechanical milling times (1, 2 and 4 h). Subsequently, mechanical and wear performance assessments were conducted using hardness, compression and pin-on-disc wear tests.
Findings
Although the specimens subjected to the most prolonged mechanical milling (4 h) demonstrated superior hardness and compressive strength properties, they exhibited a remarkable weight loss during the wear tests. The traditional evaluation, which supports that the wear performance is generally correlated with hardness, does not consider the microstructural properties. Since the sample milled for 1 h has a moderate microstructure, it showed better wear performance than the sample with higher hardness.
Originality/value
The originality of the paper is demonstrated through its evaluation of wear performance, incorporating not only hardness but also the consideration of microstructural properties resulted from mechanical milling.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0031/