Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 December 2003

Nursel Öztürk

In this research, neural network (NN) and genetic algorithm (GA) are used together to design optimal NN structure. The proposed approach combines the characteristics of GA and NN…

1082

Abstract

In this research, neural network (NN) and genetic algorithm (GA) are used together to design optimal NN structure. The proposed approach combines the characteristics of GA and NN to reduce the computational complexity of artificial intelligence applications in design and manufacturing. Genetic input selection approach is introduced to obtain optimal NN topology. Experimental results are given to evaluate the performance of the proposed system.

Details

Engineering Computations, vol. 20 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 27 July 2012

Asli Aksoy, Nursel Ozturk and Eric Sucky

Demand forecasting in the clothing industry is very complex due to the existence of a wide range of product references and the lack of historical sales data. To the authors'…

2926

Abstract

Purpose

Demand forecasting in the clothing industry is very complex due to the existence of a wide range of product references and the lack of historical sales data. To the authors' knowledge, there is an inadequate number of literature studies to forecast the demand with the adaptive network based fuzzy inference system for the clothing industry. The purpose of this paper is to construct a decision support system for demand forecasting in the clothing industry.

Design/methodology/approach

The adaptive‐network‐based fuzzy inference system (ANFIS) is used for forecasting demand in the clothing industry.

Findings

The results of the proposed study showed that an ANFIS‐based demand forecasting system can help clothing manufacturers to forecast demand more accurately, effectively and simply.

Originality/value

In this study, the demand is forecast in terms of clothing manufacturers by using ANFIS. ANFIS is a new technique for demand forecasting, it combines the learning capability of the neural networks and the generalization capability of the fuzzy logic. The input and output criteria are determined based on clothing manufacturers' requirements and via literature research, and the forecasting horizon is about one month. The study includes the real life application of the proposed system and the proposed system is tested by using real demand values for clothing manufacturers.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 11 March 2014

Asli Aksoy, Nursel Öztürk and Eric Sucky

According to literature research and conversations with apparel manufacturers' specialists, there is not any common analytic method for demand forecasting in apparel industry and…

2604

Abstract

Purpose

According to literature research and conversations with apparel manufacturers' specialists, there is not any common analytic method for demand forecasting in apparel industry and to the authors' knowledge, there is not adequate number of study in literature to forecast the demand with adaptive network-based fuzzy inference system (ANFIS) for apparel manufacturers. The purpose of this paper is constructing an effective demand forecasting system for apparel manufacturers.

Design/methodology/approach

The ANFIS is used forecasting the demand for apparel manufacturers.

Findings

The results of the proposed study showed that an ANFIS-based demand forecasting system can help apparel manufacturers to forecast demand accurately, effectively and simply.

Originality/value

ANFIS is a new technique for demand forecasting, combines the learning capability of the neural networks and the generalization capability of the fuzzy logic. In this study, the demand is forecasted in terms of apparel manufacturers by using ANFIS. The input and output criteria are determined based on apparel manufacturers' requirements and via literature research and the forecasting horizon is about one month. The study includes the real-life application of the proposed system, and the proposed system is tested by using real demand values for apparel manufacturers.

Details

Journal of Modelling in Management, vol. 9 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 3 of 3
Per page
102050