Abbas Ahmad Adamu, Norazilawati Muhamad Sarih and Seng Neon Gan
Poly(ethylene terephthalate) (PET) waste from soft drink bottles was incorporated into palm olein alkyd to produce new polyol for use in polyurethane resins as surface protection…
Abstract
Purpose
Poly(ethylene terephthalate) (PET) waste from soft drink bottles was incorporated into palm olein alkyd to produce new polyol for use in polyurethane resins as surface protection on metal surfaces.
Design/methodology/approach
Alkyd was prepared from palm olein, glycerol and phthalic anhydride. PET underwent simultaneous glycolysis and transesterification reactions with the alkyd. Varying the amount of PET has led to polyols with different viscosities. Polyurethane resins were produced by reacting the polyols with toluene diisocyanate. The resins were coated on mild steel panels and cured. Performances of the cured films were tested.
Findings
The polyurethanes (PU) resin cured to a harder film with better thermal stability. Films showed excellent adhesion properties, while higher content of PET exhibited higher pencil hardness, better water, salt, acid and alkali resistance.
Research limitations/implications
Other vegetable oils could also be used. The alkyd structure could be changed by formulation to have different functionality and the ability to incorporate higher amount of PET waste. Rate of glycolysis of PET could be increased by higher amount of ethylene glycol.
Practical implications
This method has managed to use waste PET in producing new polyol and PU resins. The cured films exhibit good mechanical and chemical properties, as well as excellent adhesion and thermal stability.
Social implications
The non-biodegradable PET has created environmental pollution problems connected to littering and illegal landfilling. It has become necessary to pay greater attention to recycling PET bottles for obtaining valuable products.
Originality/value
This approach is different from the earlier reports, where PET was recycled to recover the raw materials.
Details
Keywords
Shameer Hisham, Hairul Anuar Tajuddin, Norazilawati Muhamad Sarih, Nur Zarith Diana Diana Zakaria, Zul Hazrin Zainal Abidin and Norhana Abdul Halim
In this work, the blends of poly(methyl methacrylate), PMMA and poly(methyl vinyl ether-alt-maleic acid monoethyl ester), PMVEMA-ES are studied as organic coatings to evaluate the…
Abstract
Purpose
In this work, the blends of poly(methyl methacrylate), PMMA and poly(methyl vinyl ether-alt-maleic acid monoethyl ester), PMVEMA-ES are studied as organic coatings to evaluate the impact of intermolecular hydrogen bonding on the physical and thermal characteristics of the prepared coatings.
Design/methodology/approach
PMMA (Mw = 120,000 g mol-1) was chosen as our binder material. Due to the low adhesion property of PMMA on polar substrates, it was blended with PMVEMA-ES, which contains polar –COOH groups, to improve the adhesion and thermal properties of the coatings by forming intermolecular hydrogen bonds. A cross-hatch adhesion test was carried out to evaluate the adhesion strength of different ratios of PMMA/PMVEMA-ES blends as coatings. In addition, changes in the glass-transition temperature, Tg as the composition varies were studied using Differential Scanning Calorimetry, DSC. Then, glossiness and hiding power tests were also conducted to evaluate the physical properties of the prepared coatings.
Findings
Upon a closer look at the DSC results, it was found that blends consisting of 12.5, 25.0 and 87.5 wt. % PMMA were completely compatible due to the presence of only a single Tg in their thermograms. Other blend compositions showed two distinct Tgs, indicating partial compatibility. Furthermore, the addition of PMVEMA-ES caused the Tg of PMMA to shift to lower temperatures, a strong indication of intermolecular hydrogen bonding interactions between the two components. From the cross-hatch adhesion results, the addition of PMVEMA-ES improved the adhesion properties of PMMA coating, except for blends consisting of 62.5 and 75.0 wt. % PMMA possibly due to the partial incompatibility between the two components. These findings were further corroborated with the results of glossiness and hiding power measurements. The superior result was seen for the blend consisting of 12.5 wt. % PMMA with strong adhesion property, high glossiness, compatibility and high translucency.
Practical implications
PMVEMA-ES can potentially be used as an adhesion promoter in PMMA-based coating formulations.
Originality/value
This is the first report on the properties of PMMA/PMVEMA-ES blends as coatings.