Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 22 July 2021

Leonid Anatolevich Olenev, Rafina Rafkatovna Zakieva, Nina Nikolaevna Smirnova, Rustem Adamovich Shichiyakh, Kirill Aleksandrovich Ershov and Nisith Geetha

This study aims to present a more accurate lifetime prediction model considering solder chemical composition.

76

Abstract

Purpose

This study aims to present a more accurate lifetime prediction model considering solder chemical composition.

Design/methodology/approach

Thermal cycling and standard creep tests as well as finite element simulation were used.

Findings

The study found lower error in the solder joint lifetime evaluation. The higher the Ag content is, the higher the lifetime is achieved.

Originality/value

It is confirmed.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 16 November 2020

Buen Zhang, Noor H. Jabarullah, Ayad F. Alkaim, Svetlana Danshina, Irina V. Krasnopevtseva, Yuan Zheng and Nisith Geetha

This paper aims to establish a more accurate model for lifetime estimation.

237

Abstract

Purpose

This paper aims to establish a more accurate model for lifetime estimation.

Design/methodology/approach

Finite element model simulation and experimental tests are used to enhance the lifetime prediction model of the solder joint.

Findings

A more precise model was found.

Originality/value

It is confirmed that the paper is original.

Details

Soldering & Surface Mount Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 30 July 2021

  Supriyono, Tzu-Chia Chen, Lis M. Yapanto, Zagir Azgarovich Latipov, Angelina Olegovna Zekiy, Lyubov A. Melnikova, Lakshmi Thangavelu, A. Surendar, Nikolay I. Repnikov and Zeinab Arzehgar

In this paper, a lifetime estimation model for the solder joint is proposed which is capable of considering both severe and running mechanical shocks which is the real case in…

118

Abstract

Purpose

In this paper, a lifetime estimation model for the solder joint is proposed which is capable of considering both severe and running mechanical shocks which is the real case in electric converters in the automotive and aerospace applications. This paper aims to asses the reliability of the solder joint under mixed exposure of mechanical loads.

Design/methodology/approach

Mechanical failure process may put at risk the perfect performance of any kinds of electronic systems regardless of the applications they are prepared for. Observation of solder joint health in an electronic assembly under simultaneous exposure of severe and running shocks is an open problem. Three commonly used soldering compositions are considered while the electronic assembly is exposed to three well-known driving cycles.

Findings

The results show that the best performance is achieved using SAC405 soldering alloy in comparison with Sn63Pb37 and SAC387 solder alloy. Consideration of mixed exposure to the mechanical loads leads to much more accurate lifetime estimation of the solder joint in the electronic assemblies.

Originality/value

The originality of the paper is confirmed.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 3 of 3
Per page
102050