Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 May 2024

Nikolaos Kladovasilakis, Paschalis Charalampous, Ioannis Kostavelis and Dimitrios Tzovaras

This paper aims to present an integrated system designed for quality control and inspection in additive manufacturing (AM) technologies.

102

Abstract

Purpose

This paper aims to present an integrated system designed for quality control and inspection in additive manufacturing (AM) technologies.

Design/methodology/approach

The study undertakes a comprehensive examination of the process in three distinct stages. First, the quality of the feedstock material is inspected during the preprocessing step. Subsequently, the main research topic of the study is directed toward the 3D printing process itself with real-time monitoring procedures using computer vision methods. Finally, an evaluation of the 3D printed parts is conducted, using measuring methods and mechanical experiments.

Findings

The main results of this technical paper are the development and presentation of an integrated solution for quality control and inspection in AM processes.

Originality/value

The proposed solution entails the development of a promising tool for the optimization of the quality in 3D prints based on machine learning algorithms.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

838

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050