Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 November 2021

Adelaide Nespoli, Nicola Bennato, Enrico Bassani and Francesca Passaretti

This paper aims to examine customized NiTi jewels with functional properties fabricated through four-dimensional (4D)-printing.

403

Abstract

Purpose

This paper aims to examine customized NiTi jewels with functional properties fabricated through four-dimensional (4D)-printing.

Design/methodology/approach

Two opened rings are fabricated through selective laser melting starting from 55.2Ni-Ti (wt.%) micrometric powder. After the additive process the two rings present the one-way shape memory effect (OWSME). A specific training is accomplished on one of the two printed rings to promote the two-way shape memory effect (TWSME). Both the samples, namely, the rings, respectively, presenting the OWSME and TWSME property, follow a series of post-processing routes to improve the surface finish. Furthermore, a thermal treatment at high temperature is used to create a thin colored oxide layer on the sample surface.

Findings

Results show that the change of shape owing to the OWSME and TWSME properties allows the customized 4D-printed rings to be adaptable to environmental changes such as load and temperature variations. This adaptability improves comfort and fit of the jewels.

Originality/value

To the best of the authors’ knowledge, in this work, first cases of additively manufactured NiTi jewels are reported to propose innovative solutions in the design and processing industry of jewels.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 7 January 2022

Adelaide Nespoli, Nicola Bennato, Elena Villa and Francesca Passaretti

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

239

Abstract

Purpose

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

Design/methodology/approach

Specimens are fabricated through a Renishaw AM400 selective laser melting machine. Three microstructures (as-built, 850°C annealed and 1,050°C annealed) and two building orientations, parallel (PA) and perpendicular (PE) to the building platform, are considered. Starting from in-depth microscopic observations and comprehensive electron backscattered diffraction imaging, the study addresses non-conventional techniques such as internal friction and electrical resistivity measurements to assess the anisotropy of the fabricated parts.

Findings

Microscope observations highlight a fine texture with columnar grains parallel to the building direction in the as-built and 850°C annealed samples. Besides, coarse grains characterized the 1,050°C annealed specimens. Internal friction measurements pointed out the presence of internal stress while storage modulus analyses appear sensitive to texture. Electrical resistivity is resulted to be dependent on grain orientation.

Originality/value

The work uses some novel characterization techniques to study the anisotropy and internal stresses of Ti-6Al-4V samples processed by selective laser melting. Mechanical spectroscopy results suitable in this kind of study, as it mimics the operating conditions of the material.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 26 September 2023

Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi and Ausonio Tuissi

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded…

253

Abstract

Purpose

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw and two groups containing differently arranged sectors made of lattice-based Voronoi (LBV) structure in a longitudinal and transversal position, respectively. This study aims to explore the potentialities related to the introduction of LBV structure and assess its impact on the implant’s primary stability and mechanical performance.

Design/methodology/approach

The optimized bone screw designs were realized using the LPBF process. The quality and integrity of the specimens were assessed by scanning electron microscopy and micro-computed tomography. Primary stability was experimentally verified by the insertion and removal of the screws in standard polyurethane foam blocks. Finally, torsional tests were carried out to compare and assess the mechanical strength of the different designs.

Findings

The introduction of the LBV structure decreases the elastic modulus of the implant. Longitudinal LBV type screws demonstrated the lowest insertion torque (associated with lower bone damage) while still displaying promising torsional strength and removal force compared with full-thread screws. The use of LBV structure can promote improved functional performances with respect to the reference thread, enabling the use of lattice structures in the biomedical sector.

Originality/value

The paper fulfils an identified interest in designing customized implants with improved primary stability and promising features for secondary stability.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3
Per page
102050