Daniel Ioan, Wil Schilders, Gabriela Ciuprina, Nick van der Meijs and Wim Schoenmaker
The main aim of this study is the modelling of the interaction of on‐chip components with their electromagnetic environment.
Abstract
Purpose
The main aim of this study is the modelling of the interaction of on‐chip components with their electromagnetic environment.
Design/methodology/approach
The integrated circuit is decomposed in passive and active components interconnected by means of terminals and connectors which represent intentional and parasitic couplings of a capacitive and inductive nature. Reduced order models are extracted independently for each component.
Findings
The paper shows that one of the main theoretical problems encountered in the modelling of RF components is the difficulty to define a unique terminal voltage, independent of the integration path (this independence being a condition to allow the connection of the component in an electric circuit, where the voltage does not depend of the path shape). The concept of an electromagnetic circuit element that allows the interconnection between IC models is proposed as a solution for this drawback. The system is described either with EM field models, or by electric/magnetic circuits. By using the new concept of hooks, the EM interaction is described effectively with a reduced number of quantities.
Research limitations/implications
Since hooks have a virtual character, their identification is the result of an optimization procedure. By increasing their number the model accuracy is improved as also is the computational effort. The optimal automatic identification of electric and magnetic hooks is the subject of further research. Currently, the hooks are placed manually.
Practical implications
The modelling of IC components with hooks is part of a new methodology that takes a layout description of typical RF functional blocks that will operate at RF frequencies up to 60 GHz and transform them into sufficiently accurate, reliable electrical simulation models, taking EM coupling and variability into account. This will decrease extra design iterations, over‐dimensioning or complete failures in the design cycle of RF‐IC.
Originality/value
For the first time, the concept of magnetic terminals is used to describe interactions in RF integrated circuits. These EM “hooks” are defined in mathematical terms, as proper boundary conditions. The concept of hooks is also new. The proposed modeling methodology for EM coupling is also new. The paper is useful for nEDA designers.
Details
Keywords
Petko Kitanov, Odile Marcotte, Wil H.A. Schilders and Suzanne M. Shontz
To simulate large parasitic resistive networks, one must reduce the size of the circuit models through methods that are accurate and preserve terminal connectivity and network…
Abstract
Purpose
To simulate large parasitic resistive networks, one must reduce the size of the circuit models through methods that are accurate and preserve terminal connectivity and network sparsity. The purpose here is to present such a method, which exploits concepts from graph theory in a systematic fashion.
Design/methodology/approach
The model order reduction problem is formulated for parasitic resistive networks through graph theory concepts and algorithms are presented based on the notion of vertex cut in order to reduce the size of electronic circuit models. Four variants of the basic method are proposed and their respective merits discussed.
Findings
The algorithms proposed enable the production of networks that are significantly smaller than those produced by earlier methods, in particular the method described in the report by Lenaers entitled “Model order reduction for large resistive networks”. The reduction in the number of resistors achieved through the algorithms is even more pronounced in the case of large networks.
Originality/value
The paper seems to be the first to make a systematic use of vertex cuts in order to reduce a parasitic resistive network.