Leandro dos Santos Coelho, Viviana Cocco Mariani, Marsil de Athayde Costa e Silva, Nelson Jhoe Batistela and Jean Vianei Leite
The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector…
Abstract
Purpose
The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector hysteresis model.
Design/methodology/approach
In laminated magnetic cores when the magnetic flux rotates in the lamination plane, one observes an increase in the magnetic losses. The magnetization in these regions is very complex needing a vector model to analyze and predict its behavior. The vector Jiles-Atherton hysteresis model can be employed in rotational flux modeling. The vector Jiles-Atherton model needs a set of five parameters for each space direction taken into account. In this context, a significant amount of research has already been undertaken to investigate the application of metaheuristics in solving difficult engineering optimization problems. Harmony search (HS) is a derivative-free real parameter optimization metaheuristic algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. In this paper, a CHS approach based on the chaotic Zaslavskii map is proposed and evaluated.
Findings
The proposed CHS presents an efficient strategy to improve the search performance in preventing premature convergence to local minima when compared with the classical HS algorithm. Numerical comparisons with results using classical HS, genetic algorithms (GAs), particle swarm optimization (PSO), and evolution strategies (ES) demonstrated that the performance of the CHS is promising in parameters identification of Jiles-Atherton vector hysteresis model.
Originality/value
This paper presents an efficient CHS approach applied to parameters identification of Jiles-Atherton vector hysteresis model.
Details
Keywords
Jean V. Leite, Abdelkader Benabou, P.A. da Silva, N. Sadowski, Thomas Henneron, Stéphane Clénet, P. Kuo‐Peng, Francis Piriou and N.J. Batistela
The magnetic field strength measurement in a rotational single sheet tester (RSST) is quite difficult to achieve. In fact, flux leakage perturbs the field sensors as well as the…
Abstract
Purpose
The magnetic field strength measurement in a rotational single sheet tester (RSST) is quite difficult to achieve. In fact, flux leakage perturbs the field sensors as well as the homogeneity in the sample area. This paper seeks to present a 3D finite element (FE) model of an RSST taking into account a vector hysteresis model. The use of such model allows analyzing with accuracy the magnetic behavior of the system.
Design/methodology/approach
A vector hysteresis model, which is based on a general vectorization of the scalar Jiles‐Atherton model, is incorporated in a 3D FE code, with vector potential formulation.
Findings
The vector hysteresis model is validated by comparison with rotational experimental results. A good agreement is observed between calculations and measurements.
Originality/value
This paper shows that a classical scalar hysteresis model can be extended to take into account the magnetic vector behaviour and can be included in a 3D FE code. The methodology for the hysteresis including in the FE formulation is shown. This is useful for the design and analysis of an RSST prototype, improving the measurement techniques.