Search results

1 – 2 of 2
Article
Publication date: 7 March 2024

Nehemia Sugianto, Dian Tjondronegoro and Golam Sorwar

This study proposes a collaborative federated learning (CFL) framework to address personal data transmission and retention issues for artificial intelligence (AI)-enabled video…

Abstract

Purpose

This study proposes a collaborative federated learning (CFL) framework to address personal data transmission and retention issues for artificial intelligence (AI)-enabled video surveillance in public spaces.

Design/methodology/approach

This study examines specific challenges for long-term people monitoring in public spaces and defines AI-enabled video surveillance requirements. Based on the requirements, this study proposes a CFL framework to gradually adapt AI models’ knowledge while reducing personal data transmission and retention. The framework uses three different federated learning strategies to rapidly learn from different new data sources while minimizing personal data transmission and retention to a central machine.

Findings

The findings confirm that the proposed CFL framework can help minimize the use of personal data without compromising the AI model's performance. The gradual learning strategies help develop AI-enabled video surveillance that continuously adapts for long-term deployment in public spaces.

Originality/value

This study makes two specific contributions to advance the development of AI-enabled video surveillance in public spaces. First, it examines specific challenges for long-term people monitoring in public spaces and defines AI-enabled video surveillance requirements. Second, it proposes a CFL framework to minimize data transmission and retention for AI-enabled video surveillance. The study provides comprehensive experimental results to evaluate the effectiveness of the proposed framework in the context of facial expression recognition (FER) which involves large-scale datasets.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 15 July 2021

Nehemia Sugianto, Dian Tjondronegoro, Rosemary Stockdale and Elizabeth Irenne Yuwono

The paper proposes a privacy-preserving artificial intelligence-enabled video surveillance technology to monitor social distancing in public spaces.

Abstract

Purpose

The paper proposes a privacy-preserving artificial intelligence-enabled video surveillance technology to monitor social distancing in public spaces.

Design/methodology/approach

The paper proposes a new Responsible Artificial Intelligence Implementation Framework to guide the proposed solution's design and development. It defines responsible artificial intelligence criteria that the solution needs to meet and provides checklists to enforce the criteria throughout the process. To preserve data privacy, the proposed system incorporates a federated learning approach to allow computation performed on edge devices to limit sensitive and identifiable data movement and eliminate the dependency of cloud computing at a central server.

Findings

The proposed system is evaluated through a case study of monitoring social distancing at an airport. The results discuss how the system can fully address the case study's requirements in terms of its reliability, its usefulness when deployed to the airport's cameras, and its compliance with responsible artificial intelligence.

Originality/value

The paper makes three contributions. First, it proposes a real-time social distancing breach detection system on edge that extends from a combination of cutting-edge people detection and tracking algorithms to achieve robust performance. Second, it proposes a design approach to develop responsible artificial intelligence in video surveillance contexts. Third, it presents results and discussion from a comprehensive evaluation in the context of a case study at an airport to demonstrate the proposed system's robust performance and practical usefulness.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 2 of 2