Necat Altinkök, Ferit Ficici and Aslan Coban
The purpose of this study is to optimize input parameters of particle size and applied load to determine minimum weight loss and friction coefficient for Al2O3/SiC…
Abstract
Purpose
The purpose of this study is to optimize input parameters of particle size and applied load to determine minimum weight loss and friction coefficient for Al2O3/SiC particles-reinforced hybrid composites by using Taguchi’s design methodology.
Design/methodology/approach
The experimental results demonstrate that the applied size is the major parameter influencing the weight loss for all samples, followed by particle size. The applied load, however, was found to have a negligible effect on the friction coefficient. Moreover, the optimal combination of the testing parameters was predicted. The predicted weight loss and friction coefficient for all the test samples were found to lie close to those of the experimentally observed ones.
Findings
The optimum levels of the control factors to obtain better weight loss and friction coefficient were A8 (particle size, 60 μm) and B1 (applied load, 20 N), respectively. Taguchi’s orthogonal design was developed to predict the quality characteristics (weight loss and friction coefficient) within the selected range of process parameters (particle size and applied load). The results were validated through ANOVA.
Originality/value
Firstly, hybrid MMCs ceramic powders were produced and then mechanical tests and optimization were performed.