Search results

1 – 6 of 6
Article
Publication date: 24 April 2018

Abhishek Kumar Singh, Naresh Kumar Nagwani and Sudhakar Pandey

Recently, with a high volume of users and user’s content in Community Question Answering (CQA) sites, the quality of answers provided by users has raised a big concern. Finding…

Abstract

Purpose

Recently, with a high volume of users and user’s content in Community Question Answering (CQA) sites, the quality of answers provided by users has raised a big concern. Finding the expert users can be a method to address this problem, which aims to find the suitable users (answerers) who can provide high-quality relevant answers. The purpose of this paper is to find the expert users for the newly posted questions of the CQA sites.

Design/methodology/approach

In this paper, a new algorithm, RANKuser, is proposed for identifying the expert users of CQA sites. The proposed RANKuser algorithm consists of three major stages. In the first stage, folksonomy relation between users, tags, and queries is established. User profile attributes, namely, reputation, tags, and badges, are also considered in folksonomy. In the second stage, expertise scores of the user are calculated based on reputation, badges, and tags. Finally, in the third stage, the expert users are identified by extracting top N users based on expertise score.

Findings

In this work, with the help of proposed ranking algorithm, expert users are identified for newly posted questions. In this paper, comparison of proposed user ranking algorithm (RANKuser) is also performed with other existing ranking algorithms, namely, ML-KNN, rankSVM, LDA, STM CQARank, and EV-based model using performance parameters such as hamming loss, accuracy, average precision, one error, F-measure, and normalized discounted cumulative gain. The proposed ranking method is also compared to the original ranking of CQA sites using the paired t-test. The experimental results demonstrate the effectiveness of the proposed RANKuser algorithm in comparison with the existing ranking algorithms.

Originality/value

This paper proposes and implements a new algorithm for expert user identification in CQA sites. By utilizing the folksonomy in CQA sites and information of user profile, this algorithm identifies the experts.

Details

Data Technologies and Applications, vol. 52 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 9 July 2022

Riju Bhattacharya, Naresh Kumar Nagwani and Sarsij Tripathi

Social networking platforms are increasingly using the Follower Link Prediction tool in an effort to expand the number of their users. It facilitates the discovery of previously…

Abstract

Purpose

Social networking platforms are increasingly using the Follower Link Prediction tool in an effort to expand the number of their users. It facilitates the discovery of previously unidentified individuals and can be employed to determine the relationships among the nodes in a social network. On the other hand, social site firms use follower–followee link prediction (FFLP) to increase their user base. FFLP can help identify unfamiliar people and determine node-to-node links in a social network. Choosing the appropriate person to follow becomes crucial as the number of users increases. A hybrid model employing the Ensemble Learning algorithm for FFLP (HMELA) is proposed to advise the formation of new follower links in large networks.

Design/methodology/approach

HMELA includes fundamental classification techniques for treating link prediction as a binary classification problem. The data sets are represented using a variety of machine-learning-friendly hybrid graph features. The HMELA is evaluated using six real-world social network data sets.

Findings

The first set of experiments used exploratory data analysis on a di-graph to produce a balanced matrix. The second set of experiments compared the benchmark and hybrid features on data sets. This was followed by using benchmark classifiers and ensemble learning methods. The experiments show that the proposed (HMELA) method predicts missing links better than other methods.

Practical implications

A hybrid suggested model for link prediction is proposed in this paper. The suggested HMELA model makes use of AUC scores to predict new future links. The proposed approach facilitates comprehension and insight into the domain of link prediction. This work is almost entirely aimed at academics, practitioners, and those involved in the field of social networks, etc. Also, the model is quite effective in the field of product recommendation and in recommending a new friend and user on social networks.

Originality/value

The outcome on six benchmark data sets revealed that when the HMELA strategy had been applied to all of the selected data sets, the area under the curve (AUC) scores were greater than when individual techniques were applied to the same data sets. Using the HMELA technique, the maximum AUC score in the Facebook data set has been increased by 10.3 per cent from 0.8449 to 0.9479. There has also been an 8.53 per cent increase in the accuracy of the Net Science, Karate Club and USAir databases. As a result, the HMELA strategy outperforms every other strategy tested in the study.

Details

Data Technologies and Applications, vol. 57 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 11 July 2024

Rahul Shrivastava, Dilip Singh Sisodia and Naresh Kumar Nagwani

The Multi-Stakeholder Recommendation System learns consumer and producer preferences to make fair and balanced recommendations. Exclusive consumer-focused studies have improved…

40

Abstract

Purpose

The Multi-Stakeholder Recommendation System learns consumer and producer preferences to make fair and balanced recommendations. Exclusive consumer-focused studies have improved the recommendation accuracy but lack in addressing producers' priorities for promoting their diverse items to target consumers, resulting in minimal utility gain for producers. These techniques also neglect latent and implicit stakeholders' preferences across item categories. Hence, this study proposes a personalized diversity-based optimized multi-stakeholder recommendation system by developing the deep learning-based diversity personalization model and establishing the trade-off relationship among stakeholders.

Design/methodology/approach

The proposed methodology develops the deep autoencoder-based diversity personalization model to investigate the producers' latent interest in diversity. Next, this work builds the personalized diversity-based objective function by evaluating the diversity distribution of producers' preferences in different item categories. Next, this work builds the multi-stakeholder, multi-objective evolutionary algorithm to establish the accuracy-diversity trade-off among stakeholders.

Findings

The experimental and evaluation results over the Movie Lens 100K and 1M datasets demonstrate that the proposed models achieve the minimum average improvement of 40.81 and 32.67% over producers' utility and maximum improvement of 7.74 and 9.75% over the consumers' utility and successfully deliver the trade-off recommendations.

Originality/value

The proposed algorithm for measuring and personalizing producers' diversity-based preferences improves producers' exposure and reach to various users. Additionally, the trade-off recommendation solution generated by the proposed model ensures a balanced enhancement in both consumer and producer utilities.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 February 2023

Riju Bhattacharya, Naresh Kumar Nagwani and Sarsij Tripathi

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on…

Abstract

Purpose

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on community detection. Despite the traditional spectral clustering and statistical inference methods, deep learning techniques for community detection have grown in popularity due to their ease of processing high-dimensional network data. Graph convolutional neural networks (GCNNs) have received much attention recently and have developed into a potential and ubiquitous method for directly detecting communities on graphs. Inspired by the promising results of graph convolutional networks (GCNs) in analyzing graph structure data, a novel community graph convolutional network (CommunityGCN) as a semi-supervised node classification model has been proposed and compared with recent baseline methods graph attention network (GAT), GCN-based technique for unsupervised community detection and Markov random fields combined with graph convolutional network (MRFasGCN).

Design/methodology/approach

This work presents the method for identifying communities that combines the notion of node classification via message passing with the architecture of a semi-supervised graph neural network. Six benchmark datasets, namely, Cora, CiteSeer, ACM, Karate, IMDB and Facebook, have been used in the experimentation.

Findings

In the first set of experiments, the scaled normalized average matrix of all neighbor's features including the node itself was obtained, followed by obtaining the weighted average matrix of low-dimensional nodes. In the second set of experiments, the average weighted matrix was forwarded to the GCN with two layers and the activation function for predicting the node class was applied. The results demonstrate that node classification with GCN can improve the performance of identifying communities on graph datasets.

Originality/value

The experiment reveals that the CommunityGCN approach has given better results with accuracy, normalized mutual information, F1 and modularity scores of 91.26, 79.9, 92.58 and 70.5 per cent, respectively, for detecting communities in the graph network, which is much greater than the range of 55.7–87.07 per cent reported in previous literature. Thus, it has been concluded that the GCN with node classification models has improved the accuracy.

Details

Data Technologies and Applications, vol. 57 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 2 February 2022

Deepak Suresh Asudani, Naresh Kumar Nagwani and Pradeep Singh

Classifying emails as ham or spam based on their content is essential. Determining the semantic and syntactic meaning of words and putting them in a high-dimensional feature…

421

Abstract

Purpose

Classifying emails as ham or spam based on their content is essential. Determining the semantic and syntactic meaning of words and putting them in a high-dimensional feature vector form for processing is the most difficult challenge in email categorization. The purpose of this paper is to examine the effectiveness of the pre-trained embedding model for the classification of emails using deep learning classifiers such as the long short-term memory (LSTM) model and convolutional neural network (CNN) model.

Design/methodology/approach

In this paper, global vectors (GloVe) and Bidirectional Encoder Representations Transformers (BERT) pre-trained word embedding are used to identify relationships between words, which helps to classify emails into their relevant categories using machine learning and deep learning models. Two benchmark datasets, SpamAssassin and Enron, are used in the experimentation.

Findings

In the first set of experiments, machine learning classifiers, the support vector machine (SVM) model, perform better than other machine learning methodologies. The second set of experiments compares the deep learning model performance without embedding, GloVe and BERT embedding. The experiments show that GloVe embedding can be helpful for faster execution with better performance on large-sized datasets.

Originality/value

The experiment reveals that the CNN model with GloVe embedding gives slightly better accuracy than the model with BERT embedding and traditional machine learning algorithms to classify an email as ham or spam. It is concluded that the word embedding models improve email classifiers accuracy.

Details

Data Technologies and Applications, vol. 56 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 15 April 2022

Rahul Shrivastava, Dilip Singh Sisodia and Naresh Kumar Nagwani

In a multi-stakeholder recommender system (MSRS), stakeholders are the multiple entities (consumer, producer, system, etc.) benefited by the generated recommendations…

Abstract

Purpose

In a multi-stakeholder recommender system (MSRS), stakeholders are the multiple entities (consumer, producer, system, etc.) benefited by the generated recommendations. Traditionally, the exclusive focus on only a single stakeholders' (for example, only consumer or end-user) preferences obscured the welfare of the others. Two major challenges are encountered while incorporating the multiple stakeholders' perspectives in MSRS: designing a dedicated utility function for each stakeholder and optimizing their utility without hurting others. This paper proposes multiple utility functions for different stakeholders and optimizes these functions for generating balanced, personalized recommendations for each stakeholder.

Design/methodology/approach

The proposed methodology considers four valid stakeholders user, producer, cast and recommender system from the multi-stakeholder recommender setting and builds dedicated utility functions. The utility function for users incorporates enhanced side-information-based similarity computation for utility count. Similarly, to improve the utility gain, the authors design new utility functions for producer, star-cast and system to incorporate long-tail and diverse items in the recommendation list. Next, to balance the utility gain and generate the trade-off recommendation solution, the authors perform the evolutionary optimization of the conflicting utility functions using NSGA-II. Experimental evaluation and comparison are conducted over three benchmark data sets.

Findings

The authors observed 19.70% of average enhancement in utility gain with improved mean precision, diversity and novelty. Exposure, hit, reach and target reach metrics are substantially improved.

Originality/value

A new approach considers four stakeholders simultaneously with their respective utility functions and establishes the trade-off recommendation solution between conflicting utilities of the stakeholders.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 6 of 6