Kei Kimura, Takeshi Onogi, Naoya Yotsumoto and Fuminobu Ozaki
In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating…
Abstract
Purpose
In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating tests under steady-state conditions and in-plane numerical analysis using a beam element have been employed.
Design/methodology/approach
The load–deformation relationships in 385 N/mm2-class steel beam specimens was examined using steady-state tests at two loading rate values (0.05 and 1.00 kN/s) and at two constant member temperatures (600 and 700 °C). Furthermore, the stress–strain relationships considering the strain rate effects were proposed based on tensile coupon test results under various strain rate values. The in-plane elastoplastic numerical analysis was conducted considering the strain rate effect.
Findings
The experimental test results of the full-scale steel beam specimens confirmed that the bending strength increased with increase in strain rate. In addition, the analytical results agreed relatively well with the test results, and both strain and strain rate behaviours of a heated steel member, which were difficult to evaluate from the test results, could be quantified numerically.
Originality/value
The novelty of this study is the quantification of the strain rate effect on the bending strength of steel beams at elevated temperatures. The results clarify that the load–deformation relationship of steel beams could be evaluated by using in-plane analysis using the tensile coupon test results. The numerical simulation method can increase the accuracy of evaluation of the actual behaviour of steel members in case of fire.
Details
Keywords
Naoya Yotsumoto, Takeo Hirashima and Koji Toyoda
This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect…
Abstract
Purpose
This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect of continuity of reinforcements.
Design/methodology/approach
Experiments on composite beams with fin-plate joints protected only at the beam ends are conducted. The test parameter is the specification of reinforcement, which affects the rotational restraint of the beam ends. In addition, a simple method for predicting the failure time of the beam using an evaluation model based on the bending moment resistance of the beam considering the hogging moment resistance of the fin-plate joint and the reinforcement is also presented.
Findings
The test results indicate that the failure time of the beam is extended by the hogging moment resistance of the joints. This is particularly noticeable when using a reinforcing bar with a large plastic deformation capability. The predicted failure times based on the evaluation method corresponded well with the test results.
Originality/value
Recent studies have proposed large deformation analysis methods using FEM that can be used for fire-resistant design of beams including joints, but these cannot always be applicable in practice due to the cost and its complexity. Our method can consider the hogging moment resistance of the joint and the temperature distribution in the axial direction using a simple method without requirement of FEM.
Details
Keywords
Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto
The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…
Abstract
Purpose
The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.
Design/methodology/approach
Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.
Findings
The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.
Originality/value
The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.