Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 21 March 2023

Manjeet Kumar, Pradeep Kaswan, Nantu Sarkar, Xu Liu and Manjeet Kumari

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal…

109

Abstract

Purpose

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal generalized thermoelastic media.

Design/methodology/approach

The bulk waves are represented with Helmholtz potentials. The stress-free insulated and isothermal plane surfaces are taken into account. Rayleigh wave dispersion relation has been established and is found to be complex. Due to the presence of radicals, the dispersion equation is continuously computed as a complicated irrational expression. The dispersion equation is then converted into a polynomial equation that can be solved numerically for precise complex roots. The extra zeros in this polynomial equation are eliminated to yield the dispersion equation’s roots. These routes are then filtered for inhomogeneous wave propagation that decays with depth. To perform numerical computations, MATLAB software is used.

Findings

In this medium, only one mode of Rayleigh wave exists at both isothermal and insulated boundaries. The thermal factors of nonlocal generalized thermoelastic materials significantly influence the particle motion, attenuation and phase velocity of the Rayleigh wave.

Originality/value

Numerical examples are taken to examine how the thermal characteristics of materials affect the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) both inside and at the isothermal (or insulated) flat surface of the medium under consideration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1
Per page
102050