Deepak S. Uplaonkar, Virupakshappa and Nagabhushan Patil
The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.
Abstract
Purpose
The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.
Design/methodology/approach
After collecting the ultrasound images, contrast-limited adaptive histogram equalization approach (CLAHE) is applied as preprocessing, in order to enhance the visual quality of the images that helps in better segmentation. Then, adaptively regularized kernel-based fuzzy C means (ARKFCM) is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.
Findings
The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost. The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient, dice coefficient, precision, Matthews correlation coefficient, f-score and accuracy. The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value, which is better than the existing algorithms.
Practical implications
From the experimental analysis, the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm. However, the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.
Originality/value
The image preprocessing is carried out using CLAHE algorithm. The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm. In this research, the proposed algorithm has advantages such as independence of clustering parameters, robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.
Details
Keywords
Rangayya, Virupakshappa and Nagabhushan Patil
One of the challenging issues in computer vision and pattern recognition is face image recognition. Several studies based on face recognition were introduced in the past decades…
Abstract
Purpose
One of the challenging issues in computer vision and pattern recognition is face image recognition. Several studies based on face recognition were introduced in the past decades, but it has few classification issues in terms of poor performances. Hence, the authors proposed a novel model for face recognition.
Design/methodology/approach
The proposed method consists of four major sections such as data acquisition, segmentation, feature extraction and recognition. Initially, the images are transferred into grayscale images, and they pose issues that are eliminated by resizing the input images. The contrast limited adaptive histogram equalization (CLAHE) utilizes the image preprocessing step, thereby eliminating unwanted noise and improving the image contrast level. Second, the active contour and level set-based segmentation (ALS) with neural network (NN) or ALS with NN algorithm is used for facial image segmentation. Next, the four major kinds of feature descriptors are dominant color structure descriptors, scale-invariant feature transform descriptors, improved center-symmetric local binary patterns (ICSLBP) and histograms of gradients (HOG) are based on clour and texture features. Finally, the support vector machine (SVM) with modified random forest (MRF) model for facial image recognition.
Findings
Experimentally, the proposed method performance is evaluated using different kinds of evaluation criterions such as accuracy, similarity index, dice similarity coefficient, precision, recall and F-score results. However, the proposed method offers superior recognition performances than other state-of-art methods. Further face recognition was analyzed with the metrics such as accuracy, precision, recall and F-score and attained 99.2, 96, 98 and 96%, respectively.
Originality/value
The good facial recognition method is proposed in this research work to overcome threat to privacy, violation of rights and provide better security of data.