Search results
1 – 2 of 2Saima Yaqoob, Jaharah A. Ghani, Nabil Jouini, Shalina Sheik Muhamad, Che Hassan Che Haron and Afifah Juri
This study aims to investigate the machining performance of CVD-coated carbide tools by considering most crucial machinability aspects: cutting force, tool life, surface roughness…
Abstract
Purpose
This study aims to investigate the machining performance of CVD-coated carbide tools by considering most crucial machinability aspects: cutting force, tool life, surface roughness and chip morphology in high-speed hard turning of AISI 4340 alloy steel under a sustainable minimum quantity lubrication (MQL) environment.
Design/methodology/approach
The purpose of this study is to analyze the performance of coated carbide tools under MQL environment therefore, machining tests were performed in accordance with the Taguchi L9 orthogonal array, accommodating the three crucial machining parameters such as cutting speed (V = 300–400 m/min), feed rate (F = 0.1–0.2 mm/rev) and depth of cut (DOC = 0.2–0.4 mm). The measured or calculated values obtained in each experimental run were validated for normality assumptions before drawing any statistical inferences. Taguchi signal-to-noise (S/N) ratio and analysis of variance methodologies were used to examine the effect of machining variables on the performance outcomes.
Findings
The quantitative analysis revealed that the depth of cut exerted the most significant influence on cutting force, with a contributing rate of 60.72%. Cutting speed was identified as the primary variable affecting the tool life, exhibiting a 47.58% contribution, while feed rate had the most dominating impact on surface roughness, with an overall contributing rate of 89.95%. The lowest cutting force (184.55 N) and the longest tool life (7.10 min) were achieved with low machining parameters at V = 300 m/min, F = 0.1 mm/rev, DOC = 0.2 mm. Conversely, the lowest surface roughness (496 nm) was achieved with high cutting speed, low feed rate and moderate depth of cut at V = 400 m/min, F = 0.1 mm/rev and DOC = 0.3 mm. Moreover, the microscopic examination of the chips revealed a serrated shape formation under all machining conditions. However, the degree of serration increased with an incremental raise with cutting speed and feed rate.
Research limitations/implications
The study is limited to study the effect of machining parameters within the stated range of cutting speed, feed rate and depth of cut as well as other parameters.
Practical implications
Practitioners may consider to adopt this machining technique to create more sustainable working environment as well as eliminate the disposal cost of the used metal cutting fluid.
Social implications
By applying this machining technique, diseases caused by metal cutting fluid to the mechanist will be significantly reduced, therefore creating better lifestyles.
Originality/value
Hard turning is commonly carried out with advanced cutting tools such as ceramics, cubic boron nitride and polycrystalline cubic boron nitride to attain exceptional surface finish. However, the high cost of these tools necessitates exploration of alternative approaches. Therefore, this study investigates the potential of using cost-effective, multilayer-coated carbide tools under MQL conditions to achieve comparable surface quality.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0013/
Details
Keywords
Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the…
Abstract
Purpose
Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the integrity of the bearing surface. The purpose of this paper is to find new rolling contact fatigue (RCF) life model of rolling bearing.
Design/methodology/approach
An elastic-plastic finite element (FE) fatigue damage accumulation model based on continuous damage mechanics is established. Surface roughness, surface residual stress and surface hardness of bearing rollers are considered. The fatigue damage and cumulative plastic strain during RCF process are obtained. Mechanism of early fatigue failure of the bearing is studied. RCF life of the bearing under different surface roughness, hardness and residual stress is predicted.
Findings
To obtain a more accurate calculation result of bearing fatigue life, the bearing surface integrity parameters should be considered and the elastic-plastic FE fatigue damage accumulation model should be used. There exist the optimal surface parameters corresponding to the maximum RCF life.
Originality/value
The elastic-plastic FE fatigue damage accumulation model can be used to obtain the optimized surface integrity parameters in the design stage of bearing and is helpful for promote the development of RCF theory of rolling bearing.
Details