Search results
1 – 10 of over 5000Muhammad Yousuf Rafiq, Ayesha Sabeen, Aqeel ur Rehman and Zaheer Abbas
The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile…
Abstract
Purpose
The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile cooling and solar collectors. This study aims to investigate the convective heat transport and magnetohydrodynamics (MHD) hybrid nanofluid flow past a stretchable rotating surface using the Yamada-Ota and Xue models with the impacts of heat generation and thermal radiation.
Design/methodology/approach
The carbon nanotubes such as single-wall carbon nanotubes and multi-wall carbon nanotubes are suspended in a base fluid like water to make the hybrid nanofluid. The problem’s governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. Then, the numerical solutions are found with a bvp4c function in MATLAB software. The impacts of pertinent parameters on the flow and temperature fields are depicted in tables and graphs.
Findings
Two solution branches are discovered in a certain range of unsteadiness parameters. The fluid temperature and the rate of heat transport are enhanced when the thermal radiation and heat generation effects are increased. The Yamada-Ota model has a higher temperature than the Xue model. Furthermore, it is observed that only the first solution remains stable when the stability analysis is implemented.
Originality/value
To the best of the authors’ knowledge, the results stated are original and new with the investigation of MHD hybrid nanofluid flow with convective heat transfer using the extended version of Yamada-Ota and Xue models. Moreover, the novelty of the present study is improved by taking the impacts of heat generation and thermal radiation.
Details
Keywords
Abbas Naeimi, Mohammad Hossein Ahmadi, Milad Sadeghzadeh and Alibakhsh Kasaeian
This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling.
Abstract
Purpose
This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling.
Design/methodology/approach
To compare the optimum conditions of these two methods, a seawater reverse osmosis system was considered to produce fresh water at a rate of 4,000 m3/d for Mahyarkala city, located in north of Iran, for a period of 20 years. Using genetic algorithms and two-objective optimization method, the reverse osmosis system was designed.
Findings
The results showed that exergy efficiency in optimum condition for concentrate recycling and plug methods was 82.6 and 92.4 per cent, respectively. The optimizations results showed that concentrate recycling method, despite a 36 per cent reduction in the initial cost and a 2 per cent increase in maintenance expenses, provides 6 per cent higher recovery and 19.7 per cent less permeate concentration than two-stage plug method.
Originality/value
Optimization parameters include feed water pressure, the rate of water return from the brine for concentrate recycling system, type of SW membrane, feedwater flow rate and numbers of elements in each pressure vessel (PV). These parameters were also compared to each other in terms of recovery (R) and freshwater unit production cost. In addition, the exergy of all elements was analyzed by selecting the optimal mode of each system.
Details
Keywords
Sanatan Das, Akram Ali and Rabindra Nath Jana
Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in…
Abstract
Purpose
Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in engineering and industrial domains. The purpose of this study to simulate numerically the magneto-nanofluid flow and heat transfer over a curved stretching surface. Heat transport is explored in the presence of viscous dissipation. At the curved surface, the convective boundary condition is adopted. Three different nanoparticles, namely, copper, aluminium oxide and titanium dioxide are taken into consideration because of easily available in nature.
Design/methodology/approach
The basic flow equations are framed in terms of curvilinear coordinates. The modelled partial differential equations are transformed into a system of non-linear ordinary differential equations by means of appropriate similarity transformation. The subsequent non-linear system of equations is then solved numerically by using the Runge–Kutta–Felhberg method with the shooting scheme via bvp4c MATLAB built-in function. Impacts of various physical parameters on velocity, pressure and temperature distributions, local skin-friction coefficient, local Nusselt number and wall temperature are portrayed through graphs and tables followed by a comprehensive debate and physical interpretation.
Findings
Graphical results divulge that augmenting values of the magnetic parameter cause a decline in velocity profiles and stream function inside the boundary layer. The magnitude of the pressure function inside the boundary layer reduces for higher estimation of curvature parameter, and it is also zero when the curvature parameter goes to infinity. Furthermore, the temperature is observed in a rising trend with growing values of the magnetic parameter and Biot number.
Practical implications
This research study is very pertinent to the expulsion of polymer sheet and photographic films, metallurgical industry, electrically-conducting polymer dynamics, magnetic material processing, rubber and polymer sheet processing, continuous casting of metals, fibre spinning, glass blowing and fibre, wire and fibre covering and sustenance stuff preparing, etc.
Originality/value
Despite the huge amount of literature available, but still, very little attention is given to simulate the flow configuration due to the curved stretching surface with the convective boundary condition. Very few papers have been examined on this topic and found that its essence inside the boundary layer is not any more insignificant than on account of a stretching sheet. A numerical comparison with the published works is conducted to verify the accuracy of the present study.
Details
Keywords
Sana Goher, Zaheer Abbas and Muhammad Yousuf Rafiq
The boundary layer flow of immiscible fluids plays a crucial role across various industries, influencing advancements in industrial processes, environmental systems, healthcare…
Abstract
Purpose
The boundary layer flow of immiscible fluids plays a crucial role across various industries, influencing advancements in industrial processes, environmental systems, healthcare and more. This study explores the thermally radiative boundary layer flow of a shear-driven Ree–Eyring fluid over a nanofluid. The investigation offers valuable insights into the intricate dynamics and heat transfer behavior that arise when a nanofluid, affected by thermal radiation, interacts with a non-Newtonian Ree–Eyring fluid. This analysis contributes to a deeper understanding of the complex interactions governing such systems, which is essential for enhancing efficiency and innovation in multiple applications.
Design/methodology/approach
The simulation investigates the convergence of boundary layers under varying shear strengths. A comparative analysis is conducted using
Findings
The temperature of the Al2O3 nanoparticles is always higher than the
Originality/value
The results stated are original and new with the thermal radiative boundary layer flow of two immiscible Ree–Eyring fluid and Al2O3/
Details
Keywords
Muhamad Sharul Nizam Awang, Nurin Wahidah Mohd Zulkifli, Muhammad Mujtaba Abbas, Muhammad Syahir Amzar Zulkifli, Md Abul Kalam, Mohd Nur Ashraf Mohd Yusoff, Muhammad Hazwan Ahmad and Wan Mohd Ashri Wan Daud
The purpose of this paper was to investigate the lubricity of palm biodiesel (PB)–diesel fuel with plastic pyrolysis oil (PPO) and waste cooking biodiesel (WCB).
Abstract
Purpose
The purpose of this paper was to investigate the lubricity of palm biodiesel (PB)–diesel fuel with plastic pyrolysis oil (PPO) and waste cooking biodiesel (WCB).
Design/methodology/approach
Three quaternary fuels were prepared by mechanical stirring. B10 (10% PB in diesel) fuel was blended with 5%, 10% and 15% of both PPO and WCB. The results were compared to B30 (30% PB in diesel) and B10. The lubricity of fuel samples was determined using high-frequency reciprocating rig in accordance with ASTM D6079. The tribological behavior of all fuels was assessed by using scanning electron microscopy on worn steel plates to determine wear scar diameter (WSD) and surface morphology. The reported WSD is the average of the major and minor axis of the wear scar.
Findings
The addition of PPO and WCB to B10 had improved its lubricity while lowering wear and friction coefficients. Among the quaternary fuels, B40 showed the greatest reduction in coefficient of friction and WSD, with 7.63% and 44.5%, respectively, when compared to B10. When compared to B30a, the quaternary fuel mixes (B40, B30b and B20) exhibited significant reduction in WSD by 49.66%, 42.84% and 40.24%, respectively. Among the quaternary fuels, B40 exhibited the best overall lubricating performance, which was supported by surface morphology analysis. The evaluation of B40 indicated a reduced adhesive wear and tribo-oxidation, as well as a smoother metal surface, as compared to B20 and B30b.
Originality/value
Incorporation of PPO and WCB in PB–diesel blend as a quaternary fuel blend in diesel engines has not been reported. Only a few researchers looked into the impact of PPO and WCB on the lubricity of the fuel.
Details
Keywords
Najiyah Safwa Khashi'ie, Norihan Md Arifin, Natalia C. Rosca, Alin V. Rosca and Ioan Pop
The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable…
Abstract
Purpose
The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable stretching/shrinking sheet.
Design/methodology/approach
The combination of aluminum oxide (Al2O3) and copper (Cu) nanoparticles with total volumetric concentration is numerically analyzed using the existing correlations of hybrid nanofluid. With the consideration that both homogeneous and heterogeneous reactions are isothermal while the diffusion coefficients of both autocatalyst and reactant are same, the governing model is simplified into a set of differential (similarity) equations.
Findings
Using the bvp4c solver, dual solutions are presented, and the stability analysis certifies the physical/real solution. The findings show that the suction parameter is requisite to induce the steady solution for shrinking parameter. Besides, the fluid concentration owing to the shrinking sheet is diminished with the addition of surface reaction.
Originality/value
The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.
Details
Keywords
Nur Adilah Liyana Aladdin and Norfifah Bachok
This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the…
Abstract
Purpose
This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the magnetic field, M.
Design/methodology/approach
A set of reduced ordinary differential equations from the governing equations of partial differential equations is obtained through similarities requirements. The resulting equations are solved using bvp4c in MATLAB2019a. The impact of various physical parameters such as curvature parameter,
Findings
The findings expose that the duality of solutions appears in a shrinking region (
Practical implications
The hybrid nanofluid has widened its applications such as in electronic cooling, manufacturing, automotive, heat exchanger, solar energy, heat pipes and biomedical, as their efficiency in the heat transfer field is better compared to nanofluid.
Originality/value
The findings on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder with the effect of chemical reaction, B and magnetic field, M is new and the originality is preserved for the benefits of future researchers.
Details
Keywords
Yupaporn Areepong and Saowanit Sukparungsee
The purpose of this paper is to investigate and review the impact of the use of statistical quality control (SQC) development and analytical and numerical methods on average run…
Abstract
Purpose
The purpose of this paper is to investigate and review the impact of the use of statistical quality control (SQC) development and analytical and numerical methods on average run length for econometric applications.
Design/methodology/approach
This study used several academic databases to survey and analyze the literature on SQC tools, their characteristics and applications. The surveys covered both parametric and nonparametric SQC.
Findings
This survey paper reviews the literature both control charts and methodology to evaluate an average run length (ARL) which the SQC charts can be applied to any data. Because of the nonparametric control chart is an alternative effective to standard control charts. The mixed nonparametric control chart can overcome the assumption of normality and independence. In addition, there are several analytical and numerical methods for determining the ARL, those of methods; Markov Chain, Martingales, Numerical Integral Equation and Explicit formulas which use less time consuming but accuracy. New ideas of mixed parametric and nonparametric control charts are effective alternatives for econometric applications.
Originality/value
In terms of mixed nonparametric control charts, this can be applied to all data which no limitation in using of the proposed control chart. In particular, the data consist of volatility and fluctuation usually occurred in econometric solutions. Furthermore, to find the ARL as a performance measure, an explicit formula for the ARL of time series data can be derived using the integral equation and its accuracy can be verified using the numerical integral equation.
Details
Keywords
Zehba Raizah, Mitsuteru Asai and Abdelraheem M. Aly
The purpose of this study is to apply the incompressible smoothed particle hydrodynamics (ISPH) method to simulate the natural convection flow from an inner heated Y-fin inside…
Abstract
Purpose
The purpose of this study is to apply the incompressible smoothed particle hydrodynamics (ISPH) method to simulate the natural convection flow from an inner heated Y-fin inside Y-shaped enclosure filled with nanofluid.
Design/methodology/approach
The dimensionless governing partial differential equations are described in the Lagrangian form and solved by an implicit scheme of the ISPH method. The embedded Y-fin is kept at a high temperature Th with variable heights during the simulations. The lower area of Y-shaped enclosure is squared with width L = 1 m and its side-walls are kept at a low temperature Tc. The upper area of the Y-shaped enclosure is V-shaped with width 0.5 L for each side and its walls are adiabatic.
Findings
The performed simulations revealed that the height of the inner heated Y-fin plays an important role in the heat transfer and fluid flow inside the Y-shaped enclosure, where it enhances the heat transfer. Rayleigh number augments the buoyancy force inside the Y-shaped enclosure and, consequently, it has a strong impact on temperature distributions and strength of the fluid flow inside Y-shaped enclosure. Adding more concentration of the nanofluid until 10% has a slight effect on the temperature distributions and it reduces the strength of the fluid flow inside Y-shaped enclosure. In addition, the average Nusselt number is measured along the inner heated Y-fin and it grows as the Rayleigh number increases. The average Nusselt number is decreasing by adding more concentrations of the nanofluid.
Originality/value
An improved ISPH method is used to simulate the natural convection flow of Y-fin embedded in the Y-shaped enclosure filled with a nanofluid.
Details
Keywords
Muhammad Ijaz Khan, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Waqas and Ahmed Alsaedi
The purpose of this paper is to investigate the entropy optimization in magnetohydrodynamic hybrid nanomaterials flows toward a stretchable surface. The energy expression is…
Abstract
Purpose
The purpose of this paper is to investigate the entropy optimization in magnetohydrodynamic hybrid nanomaterials flows toward a stretchable surface. The energy expression is modeled subject to dissipation, heat generation/absorption and Joule heating. Here silicon dioxide (SiO2) and molybdenum disulfide (MoS2) as nanoparticles and propylene glycol (C3H8O2) as base fluid, respectively. Furthermore, the authors discussed the comparative study of molybdenum disulfide and silicon dioxide diluted in propylene glycol. The total entropy optimization rate is computed through implementation of the second law of thermodynamics.
Design/methodology/approach
The nonlinear partial differential system is reduced to an ordinary one through implementation of transformation. Newton built-in shooting method is used for computational results for the given system. Influences of various flow variables on the temperature, Bejan number, velocity, concentration and entropy generation rate are examined graphically for both nanoparticles (SiO2 and MoS2). Gradients of velocity and temperature are computed numerically for various physical parameters. Also, take the comparison between the present and previously published results in tabulated form.
Findings
For higher estimation of ϕ both temperature and velocity are enhanced. Entropy optimization and Bejan number have the opposite outcome for viscosity parameter. Temperature and velocity have opposite behaviors for larger values of magnetic parameter. Molybdenum disulfide (MoS2) is more efficient than silicon dioxide (SiO2).
Originality/value
No such work is yet published in the literature.
Details