Gopal Shruthi and Murugan Suvinthra
The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.
Abstract
Purpose
The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.
Design/methodology/approach
A weak convergence approach is adopted to establish the Laplace principle, which is same as the large deviation principle in a Polish space. The sufficient condition for any family of solutions to satisfy the Laplace principle formulated by Budhiraja and Dupuis is used in this work.
Findings
Freidlin–Wentzell type large deviation principle holds good for the solution processes of the stochastic functional integral equation with nonlocal condition.
Originality/value
The asymptotic exponential decay rate of the solution processes of the considered equation towards its deterministic counterpart can be estimated using the established results.