Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 18 March 2021

Jinsheng Wang, Muhannad Aldosary, Song Cen and Chenfeng Li

Normal transformation is often required in structural reliability analysis to convert the non-normal random variables into independent standard normal variables. The existing…

228

Abstract

Purpose

Normal transformation is often required in structural reliability analysis to convert the non-normal random variables into independent standard normal variables. The existing normal transformation techniques, for example, Rosenblatt transformation and Nataf transformation, usually require the joint probability density function (PDF) and/or marginal PDFs of non-normal random variables. In practical problems, however, the joint PDF and marginal PDFs are often unknown due to the lack of data while the statistical information is much easier to be expressed in terms of statistical moments and correlation coefficients. This study aims to address this issue, by presenting an alternative normal transformation method that does not require PDFs of the input random variables.

Design/methodology/approach

The new approach, namely, the Hermite polynomial normal transformation, expresses the normal transformation function in terms of Hermite polynomials and it works with both uncorrelated and correlated random variables. Its application in structural reliability analysis using different methods is thoroughly investigated via a number of carefully designed comparison studies.

Findings

Comprehensive comparisons are conducted to examine the performance of the proposed Hermite polynomial normal transformation scheme. The results show that the presented approach has comparable accuracy to previous methods and can be obtained in closed-form. Moreover, the new scheme only requires the first four statistical moments and/or the correlation coefficients between random variables, which greatly widen the applicability of normal transformations in practical problems.

Originality/value

This study interprets the classical polynomial normal transformation method in terms of Hermite polynomials, namely, Hermite polynomial normal transformation, to convert uncorrelated/correlated random variables into standard normal random variables. The new scheme only requires the first four statistical moments to operate, making it particularly suitable for problems that are constraint by limited data. Besides, the extension to correlated cases can easily be achieved with the introducing of the Hermite polynomials. Compared to existing methods, the new scheme is cheap to compute and delivers comparable accuracy.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

725

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Available. Open Access. Open Access

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 3 of 3
Per page
102050