Muhammad Naqib Nashrudin, Zhong Li Gan, Aizat Abas, M.H.H. Ishak and M. Yusuf Tura Ali
In line with the recent development of flip-chip reliability and underfill process, this paper aims to comprehensively investigate the effect of different hourglass shape solder…
Abstract
Purpose
In line with the recent development of flip-chip reliability and underfill process, this paper aims to comprehensively investigate the effect of different hourglass shape solder joint on underfill encapsulation process by mean of experimental and numerical method.
Design/methodology/approach
Lattice Boltzmann method (LBM) numerical was used for the three-dimensional simulation of underfill process. The effects of ball grid arrays (BGA) encapsulation process in terms of filling time of the fluid were investigated. Experiments were then carried out to validate the simulation results.
Findings
Hourglass shape solder joint has shown the shortest filling time for underfill process compared to truncated sphere. The underfill flow obtained from both simulation and experimental results are found to be in good agreement for the BGA model studied. The findings have also shown that the filling time of Hourglass 2 with parabolic shape gives faster filling time compared to the Hourglass 1 with hemisphere angle due to bigger cross-sectional area of void between the solder joints.
Practical implications
This paper provides reliable insights to the effect of hourglass shape BGA on the encapsulation process that will benefit future development of BGA packages.
Originality/value
LBM numerical method was implemented in this research to study the flow behaviour of an encapsulation process in term of filling time of hourglass shape BGA. To date, no research has been found to simulate the hourglass shape BGA using LBM.
Details
Keywords
Fei Chong Ng, Aizat Abas, Muhammad Naqib Nashrudin and M. Yusuf Tura Ali
This paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process.
Abstract
Purpose
This paper aims to study the filling progression of underfill flow and void formation during the flip-chip encapsulation process.
Design/methodology/approach
A new parameter of filling progression that relates volume fraction filled to filling displacement was formulated analytically. Another indicative parameter of filling efficiency was also introduced to quantify the voiding fraction in filling progression. Additionally, the underfill process on different flip-chips based on the past experiments was numerically simulated.
Findings
All findings were well-validated with reference to the past experimental results, in terms of quantitative filling progression and qualitative flow profiles. The volume fraction filled increases monotonically with the filling displacement and thus the filling time. As the underfill fluid advances, the size of the void decreases while the filling efficiency increases. Furthermore, the void formed during the underfilling flow stage was caused by the accelerated contact line jump at the bump entrance.
Practical implications
The filling progression enabled manufacturers to forecast the underfill flow front, as it advances through the flip-chip. Moreover, filling progression and filling efficiency could provide quantitative insights for the determination of void formations at any filling stages. The voiding formation mechanism enables the prompt formulation of countermeasures.
Originality/value
Both the filling progression and filling efficiency are new indicative parameters in quantifying the performance of the filling process while considering the reliability defects such as incomplete filling and voiding.