Mouna Gazzah, Boubaker Jaouachi, Laurence Schacher, Dominique Charles Adolphe and Faouzi Sakli
The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability…
Abstract
Purpose
The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability. Hence, it attempts to carry out the significant inputs and outputs that have an influence on the bagging behaviors using the Principal Component Analysis (PCA) technique. In this study, the Kawabata Evaluation System parameters such as the frictional characteristics, the bending, compression, tensile and shear parameters are investigated to propose a model highlighting and explaining their impacts on the different bagging properties. To improve the obtained results, the selected significant inputs are also analyzed within their bagging properties using Taguchi experimental design. The linear regressive models prove the effectiveness of the PCA method and the obtained findings.
Design/methodology/approach
To investigate the mechanical properties and their contributions on the bagging characteristics, some denim fabrics were collected and measured thanks to the Kawabata evaluation systems (KES-FB1, KES-FB2, KES-FB3 and KES-FB4). These bagging properties were further analyzed applying the method of PCA to acquire factor patterns that indicate the most important fabric properties for characterizing the bagging behaviors of different studied denim fabric samples. An experimental design type Taguchi was, hence, applied to improve the results. Regarding the obtained results, it may be concluded that the PCA method remained a powerful and flawless technique to select the main influential inputs and significant outputs, able to define objectively the bagging phenomenon and which should be considered from the next researches.
Findings
According to the results, there are good relationships between the Kawabata input parameters and the analyzed bagging properties of studied denim fabrics. Indeed, thanks to the PCA, it is probably easy to reduce the number of the influent parameters for three reasons. First, applying this technique of selection can help to select objectively the most influential inputs which affect enormously the bagged fabrics. Second, knowing these significant parameters, the prediction of denim fabric bagging seems fruitful and can undoubtedly help researchers explain widely this complex phenomenon. Third, regarding the findings mentioned, it seems that the prevention of this aesthetic phenomenon appearing in some specific zones of denim fabrics will be more and more accurate.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to evaluate the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behavior due to bagging phenomenon can be analyzed accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones may fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help understanding why residual bagging behavior remained after garment uses due to the internal stress and excessive extensions. Regarding the selected influential inputs and outputs relative to bagging behaviors, there are some practical implications that have an impact on the industrial and researchers to study objectively the occurrence of this aesthetic phenomenon. Indeed, this study discusses the significance of the overall inputs; their contributions on the denim fabric bagged zones aims to prevent their ability to appear after uses. Moreover, the results obtained regarding the fabric mechanical properties can be useful to fabric and garment producers, designers and consumers in specifying and categorizing denim fabric products, insuring more denim cloth use and controlling fabric value. For applications where the subjective view of the consumer is of primary importance, the KES-FB system yields data that can be used for evaluating fabric properties objectively and prejudge the consumer satisfaction in viewpoint of the bagging ability. Therefore, this study shows that by measuring shear, tensile and frictional parameters of KES-FB, it may be possible to evaluate bagging properties. However, it highlights the importance and the significance of some inputs considered influential or the contrast (non-significant) in other researches.
Originality/value
This work presents the first study analyzing the bagged denim fabric applying the PCA technique to remove the all input parameters which are not significant. Besides, it deals with the relationship developed between the mechanical fabric properties (tensile, shear and frictional stresses) and the bagging properties behavior. To improve these obtained relationships, for the first time, the regression technique and experimental design type Taguchi analysis were both applied. Moreover, it is notable to mention that the originality of this study is to let researchers and industrials investigate the most influential inputs only which have a bearing on the bagging phenomenon.
Details
Keywords
Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli
The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it…
Abstract
Purpose
The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it helps to attempt the best quality appearance of garment, by analysing their effects and relationships with the bagging behaviour of tested fabrics before and after bagging test. Using metaheuristic techniques allows us to select widely the minimal residual bagging properties and the optimized inputs to adjust them for this goal.
Design/methodology/approach
The metaheuristic methods were applied and discussed. Hence, the genetic algorithms (GA) and ant colony optimization (ACO) technique results are compared to select the best residual bagging behaviour and their correspondent parameters. The statistical analysis steps were implemented using Taguchi experimental design thanks to Minitab 14 software. The modelling methodology analysed in this paper deals with the linear regression method application and analysis to prepare to the optimization steps.
Findings
The regression results are essential for evaluate the effectiveness of the relationships founded between inputs and outputs parameters and for their optimizations in the design of interest.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to optimize the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behaviour due to bagging phenomenon can be analysed and optimized accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones can fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help to understand why residual bagging behaviour remained after garment uses due to the internal stress and excessive extensions.
Originality/value
Until now, there is no work dealing with the optimization of bagging behaviour using metaheuristic techniques. Indeed, all investigations are focused on the evaluation and theoretical modelling based on the multi linear regression analysis. It is notable that the metaheuristic techniques such as ACO and GA are used to optimize some difficult problems but not yet in the textile field excepting some studies using the GA. Besides, there is no sufficiently information to evaluate, predict and optimize the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behaviour. Several and different denim fabrics within their different characteristics are investigated to widen the experimental analysis and thus to generalize the results in the experimental design of interest.
Details
Keywords
Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli
The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining…
Abstract
Purpose
The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining the impact of some considered frictional parameters such as yarn-to-yarn friction expressed as weft yarn rigidity parameter and metal-to-fabric friction expressed by mean frictional coefficient parameter.
Design/methodology/approach
The statistical analysis steps were implemented using experimental design type Taguchi and thanks to Minitab 14 software. The modeling methodology analyzed in this paper deals with the linear regression method application and analysis. The predictive power of the obtained model is evaluated by comparing the estimated recovery velocity (theoretical) with the actual values. These comparative values are measured after the bagging test and during the relaxation time of the denim fabric samples. The regression coefficient (R2) values as well as the statistical tests (p-values, analysis of variance results) were investigated, discussed and analyzed to improve the findings.
Findings
According to the statistical results given by Taguchi analysis findings, the regression model is very significant (p-regression=0.04 and R2=97 percent) which explains widely the possibility of bagging behavior prediction in the studied experimental field of interest. Indeed the variation (the increase or the decrease) of the frictional input parameters values caused, as a result, the variation of the whole appearance and the shape of the bagged zone expressed by the residual bagging height variations. In spite of their similar compositions and characteristics, the woven bagged fabrics presented differently behaviors in terms of the bagging recovery and kinetic velocity values. After relaxation times which are not the same and relative to different fabric samples, it may be concluded that bagging behavior remained function of the internal frictional stresses, especially yarn-to-yarn and metal-to-fabric ones.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. In fact, in terms of the importance to the industrial producers of the materials it helps to provide a first step in an attempt for a better understanding of the stresses involved in bagging of woven fabrics in general and denim fabrics particularly due to important frictional input contributions. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess as function of frictional parameters in order to optimize (minimize) their effects on the bagging behaviors before and after repetitive uses. These experimental, statistical and theoretical findings may be used to predict bagginess of fabrics based on their properties and prevent industrial from the most significant and influential inputs which should be adjusted accurately. This work allows industrial, also, to make more attention, in case of a high-quality level to ensure, to optimize and review yarn behaviors used to produce fabrics against drastic solicitations and minimize frictions forms during experimental spinning and weaving processes.
Originality/value
Until now, there is no sufficient information to evaluate and predict the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behavior. Besides, there is no work that deals with the kinetic recovery evolution as function of frictional inputs to explain accurately the bagging behavior evolution during relaxation time. Therefore, this present work is to investigate and model the residual bagging recovery velocity after bagging test as function of the frictional input parameters of both denim yarn and fabric samples (expressed by the friction caused due to contact from conformator to fabric).
Details
Keywords
Mouna Feki, Hédia Hannachi, Moez Bou Ali, Haytem Hamrouni, Elvira Romano, Boubaker Karray and Mohamed Hammami
The purpose of this paper is to build a class model to confirm the authenticity of olives from Bi'r al Malluli, Tunisian region, in order to obtain the Designation of Origin (DO).
Abstract
Purpose
The purpose of this paper is to build a class model to confirm the authenticity of olives from Bi'r al Malluli, Tunisian region, in order to obtain the Designation of Origin (DO).
Design/methodology/approach
In total, ten orchards of Chemlali olive oil variety were chosen, in Sfax region, characterized by the same applied cultural techniques. Pomological characters of olives, fatty acids composition and organoleptic analysis of olive oil were conducted.
Findings
Results showed that the pomological characters were specific of the Chemlali variety: the olive weight ranged from 0.9 to 1.10 g in all studied orchards and the water content (WC) ranged from 41.45 to 57.68 per cent. All analysed oils showed good fatty acids balance. Chemlali olive oil contains high amounts of oleic acid and a smaller amount of linoleic acid. The oleic acid content ranged from 57.96 to 63.52 per cent according to the orchards. All oils having oleic acid higher than 55 per cent are categorized as extra virgin olive oil based on International Olive Oil Council (IOOC) Norma. Based on the organoleptic analysis, all the analysed oils were classified as an extra virgin olive oil. The principal component analysis applied separately on olive characters and fatty acids contents do not indicate any group's structure.
Originality/value
An objective approach based on pomologic, sensory and acidic composition analyses would be used to delimitate Protected Designation of Origin (PDOs) in olive oil from the Bi'r al Malluli area and better protect their markets.