Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian
An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…
Abstract
Purpose
An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.
Design/methodology/approach
The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.
Findings
The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.
Originality/value
Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.
Details
Keywords
Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…
Abstract
Purpose
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.
Design/methodology/approach
For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.
Findings
The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.
Research limitations/implications
In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.
Originality/value
Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.