A. Bahrawy, Mohamed El-Rabiei, Hesham Elfiky, Nady Elsayed, Mohammed Arafa and Mosaad Negem
The commercial stainless steels have been used extensively in the biomedicine application and their electrochemical behaviour in the simulated body fluid (SBF) are not uncovered…
Abstract
Purpose
The commercial stainless steels have been used extensively in the biomedicine application and their electrochemical behaviour in the simulated body fluid (SBF) are not uncovered obviously. In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys (x = 4, 8, 10 and 14) has been studied. This study aims to evaluate the rate of corrosion and corrosion resistance of some Fe–Cr–Ni alloys in SBF at 37°C.
Design/methodology/approach
In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys has been studied using open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in the SBF at 37°C and pH 7.4 for a week. Also, the surface morphology of the four alloys was investigated using scanning electron microscopy, elemental composition was obtained via energy dispersive spectroscopy and the crystal lattice structure of Fe–17Cr–xNi alloys was obtained using X-ray diffraction technique. The chemical structure of the protective oxide film has been examined by X-ray photoelectron spectroscopy (XPS) and metals ions released into the solution have been detected after different immersion time using atomic absorption spectroscopy.
Findings
The results revealed that the increase of the Ni content leads to the formation of the stable protective film on the alloys such as the Fe–17Cr–10Ni and Fe–17Cr–14Ni alloys which possess solid solution properties. The Fe–17Cr–14Ni alloy displayed highest resistance of corrosion, notable resistance for localized corrosion and the low corrosion rate in SBF because of the formation of a homogenously protective oxide film on the surface. The XPS analysis showed that the elemental Fe, Cr and Ni react with the electrolyte medium and the passive film is mainly composed of Cr2O3 with some amounts of Fe(II) hydroxide at pH 7.4.
Originality/value
This work includes important investigation to use commercial stainless steel alloys for biomedical application.
Details
Keywords
Eslam Taha, Mostafa Attia Mohie, Mahmoud Sayed Korany, Naglaa Aly, Alaa Ropy and Mosaad Negem
This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation…
Abstract
Purpose
This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation and ultraviolet (UV) degradation.
Design/methodology/approach
The protection of painting against different deterioration factors necessitates the sustainable methods and advanced techniques. Scanning electron microscopy and transmission electron microscopy have been used to investigate the morphological structure of the painting and MoS3 QDs, respectively, and optical microscopy was used to examine antibacterial activity of MoS3 QDs towards different types of bacteria. To investigate the protection of painting against deterioration, the Fourier transform IR spectroscopy (FTIR) was used to investigate the paintings left in open air for a year. Chemical composition and crystal structure of MoS3 QDs have been studied using X-ray diffraction and X-ray photoelectron spectroscopy analysis, respectively.
Findings
The addition of MoS3 nanoparticles into painted coatings enhances the durability of linseed oil-based paintings toward UV ageing regarding the change in colour which confirmed by FTIR analysis. The protection of oil painting opposed to various deterioration factors was developed by involving of MoS3 QDs in the coating of the painting. Antibacterial effect of MoS3 QDs was tested against different types of bacteria such as Pseudomonas aeruginosa confirming that the MoS3 QDs involved in the coatings of oil paintings produces a high protection layer for the paintings against several microbial attacks. In addition, coatings containing MoS3 QDs reduce the accumulation of dirt on oil paintings when subjected to open air for a year.
Originality/value
The novel MoS3 QDs was used to form a protective and transparent coating layer for the oil painting to overcome the deterioration, displays the promising protection and can be applied for different oil paintings.