Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe
This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…
Abstract
Purpose
This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.
Design/methodology/approach
In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.
Findings
The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.
Originality/value
This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.
Details
Keywords
Mojtaba Fadaei, Mohsen Izadi, Ehsanolah Assareh and Ali Ershadi
This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with…
Abstract
Purpose
This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with isotropic and inhomogeneous structures are studied. The considered tubes in the shell and tube exchanger are made of copper with specific thicknesses. The phase-change material has a non-Newtonian behavior and follows the endorsed Carreau–Yasuda Model.
Design/methodology/approach
The enthalpy–porosity method is used for modeling of the melting process. The governing equations were transferred to their dimensionless forms. Finally, the equations are solved by applying the Galerkin finite element method.
Findings
The findings for different values of the relative permeability (K*) and permeability deviation angle (λ) are represented in the forms of charts, streamlines and constant temperature contours. The considerable effects of the relative permeability (K*) and deviation angle (λ) on the flow line patterns of the melting phase-change material are some of the significant achievements of this works.
Originality/value
This study was conducted using data from relevant research articles provided by reputable academic sources. The data included in this manuscript have not been published previously and are not under consideration by any other journal.
Details
Keywords
Mohammadkarim Bahadori, Ehsan Teymourzadeh, Hamidreza Tajik, Ramin Ravangard, Mehdi Raadabadi and Seyed Mojtaba Hosseini
Strategic planning is the best tool for managers seeking an informed presence and participation in the market without surrendering to changes. Strategic planning enables managers…
Abstract
Purpose
Strategic planning is the best tool for managers seeking an informed presence and participation in the market without surrendering to changes. Strategic planning enables managers to achieve their organizational goals and objectives. Hospital goals, such as improving service quality and increasing patient satisfaction cannot be achieved if agreed strategies are not implemented. The purpose of this paper is to investigate the factors affecting strategic plan implementation in one teaching hospital using interpretive structural modeling (ISM).
Design/methodology/approach
The authors used a descriptive study involving experts and senior managers; 16 were selected as the study sample using a purposive sampling method. Data were collected using a questionnaire designed and prepared based on previous studies. Data were analyzed using ISM.
Findings
Five main factors affected strategic plan implementation. Although all five variables and factors are top level, “senior manager awareness and participation in the strategic planning process” and “creating and maintaining team participation in the strategic planning process” had maximum drive power. “Organizational structure effects on the strategic planning process” and “Organizational culture effects on the strategic planning process” had maximum dependence power.
Practical implications
Identifying factors affecting strategic plan implementation is a basis for healthcare quality improvement by analyzing the relationship among factors and overcoming the barriers.
Originality/value
The authors used ISM to analyze the relationship between factors affecting strategic plan implementation.