Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 25 October 2018

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Mohd Rody Bin Mohamad Zin and Hilmi Amiruddin

The purpose of this paper is to study the effect of hydrogen (H2) gas on the graphene growth from fruit cover plastic waste (FCPW) and oil palm fibre (OPF), as a solid feedstock…

281

Abstract

Purpose

The purpose of this paper is to study the effect of hydrogen (H2) gas on the graphene growth from fruit cover plastic waste (FCPW) and oil palm fibre (OPF), as a solid feedstock, towards the coefficient of friction (COF) properties.

Design/methodology/approach

Graphene film growth on copper (Cu) substrate was synthesised from FCPW and OPF, as a solid feedstock, using the chemical vapour deposition (CVD) method, at atmospheric pressure. The synthesised graphene was characterised using Raman spectroscopy, Scanning Electron Microscopy (SEM) and Electron Dispersed Spectroscopy (EDS). Surface hardness and roughness were measured using a nano-indenter and surface profilometer, respectively. Then, a dry sliding test was executed using a ball-on-disc tribometer at constant speed, sliding distance and load, with coated and uncoated copper sheet as the counter surface.

Findings

The presence of H2 gas reduced the running-in time of the dry sliding test. However, there is no significant effect at the constant COF region, where the graphene growth from FCPW shows the lowest COF among other surfaces.

Research limitations/implications

This paper is limited to graphene growth using the CVD method with selected parameters.

Originality/value

To the authors’ knowledge, this is the first paper on growing graphene from palm oil fiber via the CVD method and its subsequent analysis, based on friction coefficient properties.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 13 January 2020

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Hilmi Amiruddin, Mohd Rody Bin Mohamad Zin and S. Liza

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

245

Abstract

Purpose

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Design/methodology/approach

The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads.

Findings

The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene.

Originality/value

The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2
Per page
102050