Mohammad Yaghoub Abdollahzadeh Jamalabadi
This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.
Abstract
Purpose
This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.
Design/methodology/approach
The governing partial differential equations of mass, momentum and energy in addition to boundary conditions are solved by lattice Boltzmann method. The problem is solved numerically using D2Q9 population's model and Bhatnagar–Gross–Krook collision model with a code written in MATLAB.
Findings
The effects of Prandtl number (Pr) and the frequency of piezo fan vibrations are critically investigated on the hydrothermal characteristics of the square cavity. The mesh independency study and the validation of the proposed model are accomplished with numerical results of Ghia et al. (1982) and analytical solution of pure conduction very good agreement is found between present results and benchmark findings. Generally, with increasing beam frequency, the heat removal from heat source increased. It is found that, for all Prandtl numbers, wall Nusselt number will increase with the increase of the beam frequency. This enhancement is more intense in higher Prandtl number.
Originality/value
Based on these results, the use of piezo fan in an enclosure can be classified as standalone as well as heat sink integrated cooling solution.
Details
Keywords
Mohammad yaghoub Abdollahzadeh Jamalabadi
The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine…
Abstract
Purpose
The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine blades on the temperature distribution of turbine blade and creep relaxation.
Design/methodology/approach
For this analysis, the creep flow behavior of Moly Ascoloy in operational temperature of gas turbine in full scale geometry is studied for various thermal radiation properties. The commercial software is used to pursue a coupled fields analysis for turbine blades in view of the structural force, materials kinematic hardening, and steady-state temperature field.
Findings
During steady-state operation, the thermal stress was found to be decreasing, whereas by considering the thermal radiation this rate was noticed to increase slightly. Also by increase of the distance between stator blades the thermal radiation effect is diminished. Finally, by decrease of the blade distance the failure probability and creep plastic deformation decrease.
Research limitations/implications
This paper describes the effect of thermal radiation in thermal-structural analysis of the gas turbine stator blade made of the super-alloy M-152.
Practical implications
Blade failures in gas turbine engines often lead to loss of all downstream stages and can have a dramatic effect on the availability of the turbine engines. There are many components in a gas turbine engine, but its performance is highly profound to only a few. The majority of these are hotter end rotating components.
Social implications
Three-dimensional finite element thermal and stress analyses of the blade were carried out for the steady-state full-load operation.
Originality/value
In the previous works the thermal radiation effects on creep behavior of the turbine blade have not performed.
Details
Keywords
Seyed Ali Atyabi, Ebrahim Afshari and Mohammad Yaghoub Abdollahzadeh Jamalabadi
In this paper, a single module of cross-flow membrane humidifier is evaluated as a three-dimensional multiphase model. The purpose of this paper is to analyze the effect of volume…
Abstract
Purpose
In this paper, a single module of cross-flow membrane humidifier is evaluated as a three-dimensional multiphase model. The purpose of this paper is to analyze the effect of volume flow rate, dry temperature, dew point wet temperature and porosity of gas diffusion layer on the humidifier performance.
Design/methodology/approach
In this study, one set of coupled equations are continuity, momentum, species and energy conservation is considered. The numerical code is benchmarked by the comparison of numerical results with experimental data of Hwang et al.
Findings
The results reveal that the transfer rate of water vapor and dew point approach temperature (DPAT) increase by increasing the volume flow rate. Also, it is found that the water recovery ratio (WRR) and relative humidity (RH) decrease with increasing volume flow rate. In addition, all mixed results decrease with increasing dry side temperature especially at high volume flow rates and this trend in high volume flow rates is more sensible. Although the transfer rate of water vapor and DPAT increases with increasing the wet inlet temperature, WRR and RH reduce. Increasing dew point temperature effect is more sensible at the wet side is compared with the dry side. The humidification performance will be enhanced with increasing diffusion layer porosity by increasing the wet inlet dew point temperature, but has no meaningful effect on other operating parameters. The pressure drop along humidifier gas channels increases with rising flow rate, consequently, the required power of membrane humidifier will enhance.
Originality/value
According to previous studies, the three-dimensional numerical multiphase model of cross-flow membrane humidifier has not been developed.
Details
Keywords
Qingang Xiong, Arash Khosravi, Narjes Nabipour, Mohammad Hossein Doranehgard, Aida Sabaghmoghadam and David Ross
This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.
Abstract
Purpose
This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.
Design/methodology/approach
The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters.
Findings
The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented.
Originality/value
The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.
Details
Keywords
Hashwini Lalchand Thadani, Fadia Dyni Zaaba, Muhammad Raimi Mohammad Shahrizal, Arjun Singh Jaj A. Jaspal Singh Jaj and Yun Ii Go
This paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.
Abstract
Purpose
This paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.
Design/methodology/approach
This project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.
Findings
Computational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.
Originality/value
Wind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.