Search results
1 – 10 of 28Mythili Durairaj, Sivaraj Ramachandran and Rashidi Mohammad Mehdi
The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate…
Abstract
Purpose
The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium in the presence of cross-diffusion effects.
Design/methodology/approach
A numerical computation for the governing equations has been performed using implicit finite difference method of Crank–Nicolson type.
Findings
The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically, and the physical aspects are discussed in detail. Numerical results for average skin-friction, Nusselt number and Sherwood number are tabulated for the pertaining physical parameters. Results indicate that Soret and Dufour effects have notable influence on heat and mass transfer characteristics of the fluid when the temperature and concentration gradients are high. It is also observed that the consideration of heat generation/absorption plays a vital role in predicting the heat transfer characteristics of moving fluids.
Research limitations/implications
Consider a two-dimensional, unsteady, free convective flow of an incompressible Casson fluid over a vertical cone and a flat plate saturated with non-Darcy porous medium. The fluid properties are assumed to be constant except for density variations in the buoyancy force term. The fluid flow is moderate and the permeability of the medium is assumed to be low, so that the Forchheimer flow model is applicable.
Practical implications
The flow of Casson fluids (such as drilling muds, clay coatings and other suspensions, certain oils and greases, polymer melts and many emulsions), in the presence of heat transfer, is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs.
Social implications
In the heat and mass transfer investigations, the Casson fluid model is found to be accurately applicable in many practical situations in the wings of polymer processing industries and biomechanics, etc.; some prominent examples are silicon suspensions, suspensions of bentonite in water and lithographic varnishes used for printing inks.
Originality/value
The motivation of the present study is to bring out the effects of heat source/sink, Soret and Dufour effects on chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium. The flow of Casson fluids (such as certain oils and greases, polymer melts and many emulsions) in the presence of heat transfer is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. A numerical computation for the governing equations has been performed using implicit finite difference method of the Crank–Nicolson type.
Details
Keywords
Aurang Zaib, Mohammad Mehdi Rashidi, Ali J. Chamkha and Krishnendu Bhattacharyya
This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius…
Abstract
Purpose
This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius function is used.
Design/methodology/approach
The highly non-linear governing equations are developed using similarity transformations and then computed numerically via Keller–Box method.
Findings
The influences of emerging parameters on velocity, temperature distribution and concentration of nanoparticle are explained and presented via graphs and tables. Also, the behavior of fluid flow is investigated through the coefficient of skin friction, Nusselt and Sherwood numbers. Results reveal that the velocity profile enhances due to increasing Casson parameter and magnetic parameter, whereas the temperature distribution and concentration of nanoparticle decrease with larger vales of Casson parameter. It is inspected that the concentration boundary layer increases due to activation energy and decreases due to reaction rate and temperature differences.
Originality/value
The authors believe that all the numerical results are original and significant which are used in biomedicine, industrial, electronics and transportation. The results have not been considered elsewhere.
Details
Keywords
Aurang Zaib, Rizwan Ul Haq, Ali J. Chamkha and Mohammad Mehdi Rashidi
The purpose of this paper is to present an inclusive study of the mixed convective flow involving micropolar fluid holding kerosene/water-based TiO2 nanoparticle towards a…
Abstract
Purpose
The purpose of this paper is to present an inclusive study of the mixed convective flow involving micropolar fluid holding kerosene/water-based TiO2 nanoparticle towards a vertical Riga surface with partial slip. The outcomes are confined for opposing and assisting flows.
Design/methodology/approach
Similarity equations are acquired and then worked out numerically by the Keller box technique.
Findings
Impacts of significant parameters on microrotation velocity, temperature distribution, velocity profile together with the Nusselt number and the skin friction are argued with the help of graphs. Two solutions are achieved in opposing flow, while the solution is unique in assisting flow. It is also monitored that the separation of boundary layer delays because of micropolar parameter and accelerates because of volume fraction.
Originality/value
The authors trust that all these results are new and significant for researchers.
Details
Keywords
Yuan Ma, Rasul Mohebbi, Mohammad Mehdi Rashidi and Zhigang Yang
This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot…
Abstract
Purpose
This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method.
Design/methodology/approach
The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated.
Findings
It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel.
Originality/value
In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.
Details
Keywords
Aydin Zehforoosh, Siamak Hossainpour and Mohammad Mehdi Rashidi
The purpose of this study is to indicate the effect of mounting heat generating porous matrix in a close cavity on the Brownian term of CuO-water nanofluid and its impact on…
Abstract
Purpose
The purpose of this study is to indicate the effect of mounting heat generating porous matrix in a close cavity on the Brownian term of CuO-water nanofluid and its impact on improving the Nusselt number.
Design/methodology/approach
Because of the presence of heat source in porous matrix, couple of energy equations is solved for porous matrix and nanofluid separately. Thermal conductivity and viscosity of nanofluid were assumed to be consisting of a static component and a Brownian component that were functions of volume fraction of the nanofluid and temperature. To explain the effect of the Brownian term on the flow and heat fields, different parameters such as heat conduction ratio, interstitial heat transfer coefficient, Rayleigh number, concentration of nanoparticles and porous material porosity were investigated and compared to those of the non-Brownian solution.
Findings
The Brownian term caused the cooling of porous matrix because of rising thermal conductivity. Mounting the porous material into cavity changes the temperature distribution and increases Brownian term effect and heat transfer functionality of the nanofluid. Besides, the effect of the Brownian term was seen to be greatest at low Rayleigh number, low-porosity and small thermal conductivity of the porous matrix. It is noteworthy that because of decrement of thermal conduction in high porosities, the impact of Brownian term drops severely making it possible to obtain reliable results even in the case of neglecting Brownian term in these porosities.
Originality/value
The effect of mounting the porous matrix with internal heat generation was investigated on the improvement of variable properties of nanofluid.
Details
Keywords
Nikita Sergeevich Gibanov, Mohammad Mehdi Rashidi and Mikhail Sheremet
The purpose of this paper is to investigate numerically thermal convection heat transfer in closed square and cubical cavities with local energy sources of various geometric…
Abstract
Purpose
The purpose of this paper is to investigate numerically thermal convection heat transfer in closed square and cubical cavities with local energy sources of various geometric shapes.
Design/methodology/approach
The analyzed regions are square and cubical cavities with two isothermally cold opposite vertical walls, whereas other walls are adiabatic. A local energy element of rectangular, trapezoidal or triangular shape is placed on the lower surface of the cabinet. The lattice Boltzmann technique has been used as the main method for the problem solution in two-dimensional (2D) and three-dimensional (3D) formulations, whereas the finite difference technique with non-primitive parameters such as stream function and vorticity has been also used.
Findings
The velocity and temperature fields for a huge range of Rayleigh number 104–106, as well as for various geometry shapes of the heater have been studied. A comparative analysis of the results obtained on the basis of two numerical techniques for 2D and 3D formulations has been performed. The dependences of the energy transfer strength in the region on the shape of energy source and Rayleigh number have been established. It has been revealed that the triangular shape of the energy source corresponds to the maximum values of the velocity vector and temperature within the cavity, and the rectangular shape corresponds to the minimum values of these mentioned variables. With the growth of the Rayleigh number, the difference in the values of these mentioned variables for rectangular and triangular shapes of heaters also increases.
Originality/value
The originality of this work is to scrutinize the lattice Boltzmann method and finite difference method for the problem of natural convection in 2D and 3D closed chambers with a local heated element.
Details
Keywords
Mahmoud Salari, Mohammad Mehdi Rashidi, Emad Hasani Malekshah and Masoud Hasani Malekshah
Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using…
Abstract
Purpose
Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using the turbulent/transition models on numerical results of the natural convection and flow field within a trapezoidal enclosure.
Design/methodology/approach
The three-dimensional (3D) trapezoidal enclosure with different inclined side walls of 75, 90 and 105 degrees are considered, where the side walls are heated and cooled at Ra = 1.5 × 109 for all cases. The turbulent models of the k-ε-RNG, k- ω-shear-stress transport (SST) and the newly developed transition/turbulent model of Reθ-γ-transition SST are utilized to analyze the fluid flow and heat transfer characteristics within the enclosure and compared their results with validated results.
Findings
Comprehensive comparisons have been carried out for all cases in terms of flow and temperature fields, as well as turbulent quantities, such as turbulent kinetic energy and turbulent viscosity ratio. Furthermore, the velocity and thermal boundary layers have been investigated, and the approximate transition regions for laminar, transitional and turbulent regimes have been determined. Finally, the heat transfer coefficient and skin friction coefficient values have been presented and compared in terms of different turbulent models and configurations. The results show that the transition/turbulence model has better prediction for the flow and heat fields than fully turbulent models, especially for local parameters for all abovementioned governing parameters.
Originality value
The originality of this work is to analyze the 3D turbulent/transitional natural convection with different turbulence/transition models in a trapezoidal enclosure.
Details
Keywords
Yuan Ma, Mohammad Mehdi Rashidi, Rasul Mohebbi and Zhigang Yang
The nanofluid natural convection heat transfer in a hollow complex enclosure, which is named as Shamse knot shape, is studied numerically. This paper aims to present how the…
Abstract
Purpose
The nanofluid natural convection heat transfer in a hollow complex enclosure, which is named as Shamse knot shape, is studied numerically. This paper aims to present how the Rayleigh number, nanoparticle volume fraction, Hartmann number and hollow side length affect the fluid flow and heat transfer characteristics.
Design/methodology/approach
The continuity, momentum and energy equations have been solved using lattice Boltzmann method (LBM). Numerical simulation has been obtained for a wide range of Rayleigh number (103 ≤ Ra ≤ 106), nanoparticle volume fraction (0 ≤ ϕ 0.05) and Hartmann number (0 ≤ Ha ≤ 60) to analyze the fluid flow pattern and heat transfer characteristics. Moreover, the effect of hollow side length (D) on flow field and thermal performance is studied.
Findings
The results showed that the magnetic field has a negative effect on the thermal performance and the average Nusselt number decreases by increasing the Hartmann number. Because of the high conduction heat transfer coefficient of nanoparticles, the average Nusselt number increases by rising the nanoparticle volume fraction. The effect of adding nanoparticles on heat transfer is more effective at low nanoparticle volume fraction (0 ≤ ϕ ≤ 0.01). It was also found that at Ra = 106, when the hollow side length increases to 3, the flow pattern becomes different due to the small gap. The averaged Nu is an increasing function of D at low Ra and an opposite trend occurs at high Rayleigh number.
Originality/value
For the first time, the effects of magnetic field, Rayleigh number, nanoparticle volume fraction and hollow side length on natural convection heat transfer of hybrid nanofluid (Ag-TiO2/water) is investigated in a complicated cavity.
Details
Keywords
Endalkachew Getachew Ushachew, Mukesh Kumar Sharma and Mohammad Mehdi Rashidi
The purpose of this study is to explore the heat transfer enhancement in copper–water nanofluid flowing in a diagonally vented rectangular enclosure with four discrete heaters…
Abstract
Purpose
The purpose of this study is to explore the heat transfer enhancement in copper–water nanofluid flowing in a diagonally vented rectangular enclosure with four discrete heaters mounted centrally on the sidewalls and a square-shaped embedded heated block in the influence of a static magnetic field.
Design/methodology/approach
Four discrete heaters are mounted centrally on each sidewall of the rectangular enclosure that embraces a heated square block. A static transverse magnetic field is acting on the vertical walls. The Navier–Stokes equations of motion and the energy equation are modified by incorporating Lorentz force and basic physical properties of nanofluid. The derived momentum and energy equations are tackled numerically using the successive over-relaxation technique associating with the Gauss–Seidel iteration technique. The effects of physical parameters connected to dynamics of flow and heat convection are explored from streamlines and isotherms graphs and discussed numerically in terms of Nusselt number.
Findings
The effect of the embedded heated square block size and its location in the enclosure, nanoparticles volume fraction and the intensity of the magnetic field on flow and heat transfer are computed. Compared with the case when no heated block is embedded in the enclosure, in free convection at Ra = 106, the average local Nusselt number on the wall-mounted heaters is attenuated by 8.25%, 11.24% and 12.75% when the enclosure embraced a heated square block of side length 10% of H, 20% of H and 30% of H, respectively. An increase in Hartmann number suppresses the heat convection.
Research limitations/implications
The enhancement in the convective heat is greater when the buoyancy effect dominates the viscous effects. Placing the embedded heated block near the inlet vent, the lower temperature zone has reduced while the embedded heated block is at the central location of the enclosure, the high-temperature zone has expanded. The external magnetic field can be used as a non-invasive controlling device.
Practical implications
The numerically simulated results for heat convection of water-based copper nanofluid agreed qualitatively with the existing experimental results.
Social implications
The models could be used in designing a target-oriented heat exchanger.
Originality/value
The paper includes a comparative study for three locations of the embedded heated square. The optimal results for the centrally located heated block are also performed for three different sizes of the embedded block. The numerically simulated results are compared with the published numerical and experimental studies.
Details
Keywords
Syed Tauseef Mohyud-din, Naveed Ahmed, Umar Khan and Mohammad Mehdi Rashidi
The purpose of this study is to analyze thermo-diffusion and diffusion-thermo effects, combined with first-order chemical reaction, in the flow of a micropolar fluid through an…
Abstract
Purpose
The purpose of this study is to analyze thermo-diffusion and diffusion-thermo effects, combined with first-order chemical reaction, in the flow of a micropolar fluid through an asymmetric channel with porous boundaries. Suction/injection velocities of upper and lower walls are taken to be different from each other. The channel exhibits a parting or embracing motion and the fluid enters, or leaves, the channel because of suction/injection through the permeable walls.
Design/methodology/approach
The solution of the problem is obtained by using the fourth-order Runge-Kutta method combined with the shooting technique.
Findings
The asymmetric nature of the channel that is caused by the different permeabilities of the walls deeply influences the flow. The temperature of the fluid rises significantly by increasing the absolute value of A for both Case I and Case II. While, for the concentration profile, the concentration drops near the lower vicinity of the center in Case I, and, it falls near the lower wall of the channel in Case II. Stronger Dufour effects increase the temperature of the fluid except for Case 1 at the center of the channel and for Case II in lower quarter of the channel.
Originality/value
It is confirmed that the presented work is original and is not under consideration by any other journal.
Details