Search results
1 – 2 of 2Mariyana Aida Ab Kadir, Mohammad Iqbal Khiyon, Abdul Rahman Mohd. Sam, Ahmad Beng Hong Kueh, Nor Hasanah Abdul Shukor Lim, Muhammad Najmi Mohamad Ali Mastor, Nurizaty Zuhan and Roslli Noor Mohamed
The purpose of this paper is to examine the mechanical properties, material composition of spent garnet as a sand replacement in high-strength concrete at room and elevated…
Abstract
Purpose
The purpose of this paper is to examine the mechanical properties, material composition of spent garnet as a sand replacement in high-strength concrete at room and elevated temperatures. Bonding of the concrete containing spent garnet and reinforcing rebar is investigated. Moreover, the optimum thickness of concrete cover subjected to elevated temperatures is investigated.
Design/methodology/approach
First, the plain spent garnet was physically, chemically and thermally studied. Then, a series of concrete specimens with 0, 20, 40, 60, 80 and 100 per cent of spent garnet were prepared to determine the optimum percentage of spent garnet. Finally, the physical and mechanical behaviours of concrete specimens and effects of cover thickness on steel rebar when subjected to elevated temperature of 200°C, 400°C, 600°C and 800°C for 1 h were studied. It was observed that spent garnet was thermally stable compared to river sand.
Findings
Mechanical properties were found to be optimal for concrete with 40% spent garnet replacement. Physically, spent garnet concrete changed colour to brown at 400°C, and to whitish grey at 600°C. The residual compressive strength of spent garnet concrete was also found slightly higher than that for control specimens. At various high temperatures, the reduction in ultimate tensile stress for steel bar inside concrete cover of 30 mm was the lowest compared to that of 20 mm.
Research limitations/implications
Spalling effect it not considered in this study.
Practical implications
The optimum concrete cover is important issues in reinforced concrete design. This can be used as a guideline by structural designers when using a different type of concrete material in the construction.
Social implications
Utilization of the waste spent garnet reduces usage of natural aggregates in concrete production and enhances its performance at elevated temperatures. Natural aggregates are normally taken from sand and rock. The new innovation in concrete perhaps can produce light concrete, reduce the cost of concrete production and at the same time also mitigates environmental problems affect from waste material such as minimizing disposal area.
Originality/value
Utilization of spent garnet in ordinary Portland cement (OPC) concrete at high temperature is a new innovation. It shows that the concrete cover of the concrete element reduced as compared to the OPC concrete. Reduce in weight concrete however the strength of concrete is similar to conventional concrete. This study at elevated temperature has never been performed by any previous researcher.
Details
Keywords
Nurizaty Zuhan, Mariyana Aida Ab Kadir, Muhammad Najmi Mohamad Ali Mastor, Shek Poi Ngian and Abdul Rahman Mohd. Sam
Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good…
Abstract
Purpose
Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good plasticity and is excellent for seismic and fire performance as compared to hollow steel column without a filler.
Design/methodology/approach
Experimental and numerical investigation has been carried out to study the performance of CFHS having different concrete in-fill and shape of steel tube.
Findings
In this paper, an extensive review of experiment performed on CFHS columns at elevated temperature is presented in different types of concrete as filling material. There are three different types of concrete filling used by the researchers, such as normal concrete (NC), reinforced concrete and pozzolanic-fly ash concrete (FC). A number of studies have conducted experimental investigation on the performance of NC casted using recycled aggregate at elevated temperature. The research gap and the recommendations are also proposed. This review will provide basic information on an innovation on steel column by application of in-filled materials.
Research limitations/implications
Design guideline is not considered in this paper.
Practical implications
Fire resistance is an important issue in the structural fire design. This can be a guideline to define the performance of the CFHS with different type of concrete filler at various exposures.
Social implications
Utilization of waste fly ash reduces usage of conventional cement (ordinary Portland cement) in concrete production and enhances its performance at elevated temperature. The new innovation in CFHS columns with FC can reduce the cost of concrete production and at the same time mitigate the environmental issue caused by waste material by minimizing the disposal area.
Originality/value
Review on the different types of concrete filler in the CFHS column. The research gap and the recommendations are also proposed.
Details