Younes El Kacimi, Mouhsine Galai, Khaoula Alaoui, Rachid Touir and Mohamed Ebn Touhami
The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in…
Abstract
Purpose
The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in steels/cetyltrimethylammonium bromide combined and KI (mixture)/5.0 M hydrochloric acid systems has been studied in relation to the temperature using chemical (weight loss), Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electronic microscope (SEM) analysis and Optical 3D profilometry characterization. All the methods used are in reasonable agreement. The kinetic and thermodynamic parameters for each steels corrosion and inhibitor adsorption, respectively, were determined and discussed. Results show that the adsorption capacity for Steel Classes A and B are better than Steel Class C surfaces depending on their silicon and phosphorus content. Surface analyses via SEM and Optical 3D profilometry was used to investigate the morphology of the steels before and after immersion in 5.0 M HCl solution containing mixture. Surface analysis revealed improvement of corrosion resistance of Steels Classes A and B in the presence of mixture more than Classes C. It has been determined that the adsorbed protective film on the steels surface heterogeneity markedly depends on steels compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.
Design/methodology/approach
The effect of silicon and phosphorus content in Steels Classes A, B and C on its corrosion and inhibitor mixture adsorption processes in 5.0 M HCl solution has been studied by weight loss, potentiodynamic polarization, EIS and surface analysis.
Findings
The inhibition efficiency of mixture follows the order: (Steel Class A) > (Steel Class B) > Steel Class C) and depends on their compositions in the absence of mixture according on their silicon and phosphorus content, that is, the corrosion rate increases with increasing of the silicon and phosphorus content. A potentiodynamic polarization measurement indicates that the mixture acts as mixed-type inhibitor without changing the mechanism of corrosion process for the three classes of mild steels.
Originality/value
Corrosion rate mild steels in 5.0 M HCl depends on their compositions in the absence of mixture according to their silicon and phosphorus content, that is, the corrosion rate increases with increasing silicon and phosphorus content. The adsorbed protective film on the steels surface heterogeneity markedly depends on steels class’s compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.
Details
Keywords
Daoiya Zouied, Emna Zouaoui, Mohamed Salah Medjram, Olfa Chikha and Karima Dob
Corrosion and corrosion inhibition of alloyed zinc electrode were investigated in neutral chloride solution using electrochemical techniques. The purpose of this study is to study…
Abstract
Purpose
Corrosion and corrosion inhibition of alloyed zinc electrode were investigated in neutral chloride solution using electrochemical techniques. The purpose of this study is to study the corrosion inhibition of acetanilide and para hydroxy acetanilide as organics inhibitors for corrosion control of alloyed zinc electrode in NaCl 3 per cent solution.
Design/methodology/approach
A volt lab PGZ 301, assembled using alloyed zinc working electrode, a platinum counter electrode and a saturated calomel electrode as the reference electrode, was used in the experiment. This research was conducted using potentiodynamic polarization and electrochemical impedance spectroscopy techniques.
Findings
Acetanilide, para hydroxy acetanilide and their mixture provided inhibitions efficiencies of 88 per cent at 40 ppm, 87 per cent with 80 ppm and 99.86 per cent with (40 ppm AC + 80 ppm PHA), respectively. The study also discusses the corrosion inhibition mechanism of the protective layers. The adsorption of acetanilide and para hydroxy acetanilide on metal surface obeyed Langmuir’s adsorption isotherm. Polarization measurements showed that the acetanilide and the para hydroxy acetanilide, and their mixture acted as cathodic inhibitors in NaCl solution, and the inhibitor molecules followed physical adsorption on the surface of alloyed zinc.
Originality/value
The other new inhibitors which are very efficient inhibitors and to be applied in the field of prevention and control against corrosion.
Details
Keywords
Jiongyi Yan, Emrah Demirci and Andrew Gleadall
This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing…
Abstract
Purpose
This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.
Design/methodology/approach
In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.
Findings
Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.
Originality/value
To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).
Details
Keywords
Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab
This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…
Abstract
Purpose
This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.
Design/methodology/approach
A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.
Findings
The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.
Originality/value
It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.