Search results
1 – 2 of 2Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson
This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…
Abstract
Purpose
This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.
Design/methodology/approach
This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.
Findings
The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.
Originality/value
This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.
Details
Keywords
Zeyuan Zhou, Ying Wang and Zhijie Xia
This study aims to establish a thermally coupled two-dimensional orthogonal cutting model to further improve the modeling process for systematic evaluation of material damage…
Abstract
Purpose
This study aims to establish a thermally coupled two-dimensional orthogonal cutting model to further improve the modeling process for systematic evaluation of material damage, stiffness degradation, equivalent plastic strain and other material properties, along with cutting temperature distribution and cutting forces. This enhances modeling efficiency and accuracy.
Design/methodology/approach
A two-dimensional orthogonal cutting thermo-mechanical coupled finite element model is established in this study. The tanh material constitutive model is used to simulate the mechanical properties of the material. Velocity-dependent friction model between the workpiece and the tool is considered. Material characteristics such as material damage, stiffness degradation, equivalent plastic strain and temperature field during cutting are evaluated through computation. Contact pressure and shear stress on the tool surface are extracted for friction analysis.
Findings
Speed-dependent friction models predict cutting force errors as low as 8.6%. The prediction errors of various friction models increase with increasing cutting forces and depths of cut, and simulation results tend to be higher than experimental data.
Social implications
The current research results provide insights into understanding and controlling tool-chip friction in metal cutting, offering practical recommendations for friction modeling and machining simulation work.
Originality/value
The originality of this research is guaranteed, as it has not been previously published in any journal or publication.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0162/
Details