Search results

1 – 4 of 4
Article
Publication date: 2 October 2024

Sabri Can Ekerer, Cem Boğa, Mirsadegh Seyedzavvar, Tahsin Koroglu and Touraj Farsadi

This study aims to investigate the impact of different printing parameters on the free vibration characteristics of 3D printed cantilever beams. Through a comprehensive analysis…

Abstract

Purpose

This study aims to investigate the impact of different printing parameters on the free vibration characteristics of 3D printed cantilever beams. Through a comprehensive analysis of material extrusion (ME) variables such as extrusion rate, printing pattern and layer thickness, the study seeks to enhance the understanding of how these parameters influence the vibrational properties, particularly the natural frequency, of printed components.

Design/methodology/approach

The experimental design involves conducting a series of experiments using a central composite design approach to gather data on the vibrational response of ABS cantilever beams under diverse ME parameters. These parameters are systematically varied across different levels, facilitating a thorough exploration of their effects on the vibrational behavior of the printed specimens. The collected data are then used to develop a predictive model leveraging a hybrid artificial neural network (ANN)/ particle swarm optimization (PSO) approach, which combines the strengths of ANN in modeling complex relationships and PSO in optimizing model parameters.

Findings

The developed ANN/PSO hybrid model demonstrates high accuracy in predicting the natural frequency of 3D printed cantilever beams, with a correlation ratio (R) of 0.9846 when tested against experimental data. Through iterative fine-tuning with PSO, the model achieves a low mean square error (MSE) of 1.1353e-5, underscoring its precision in estimating the vibrational characteristics of printed specimens. Furthermore, the model’s transformation into a regression model enables the derivation of surface response characteristics governing the vibration properties of 3D printed objects in response to input parameters, facilitating the identification of optimal parameter configurations for maximizing vibration characteristics in 3D printed products.

Originality/value

This study introduces a novel predictive model that combines ANNs with PSO to analyze the vibrational behavior of 3D printed ABS cantilever beams produced under various ME parameters. By integrating these advanced methodologies, the research offers a pioneering approach to precisely estimating the natural frequency of 3D printed objects, contributing to the advancement of predictive modeling in additive manufacturing.

Details

Rapid Prototyping Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2022

Mirsadegh Seyedzavvar and Cem Boğa

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene…

188

Abstract

Purpose

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene 3D printed samples with different internal architectures.

Design/methodology/approach

The nanocomposite filaments have been fabricated by a melt-blending technique. The standard tensile, compact tension and special fracture test samples, named Arcan specimens, have been printed at constant extrusion parameters and at four different internal patterns. A special fixture was used to carry out the mixed-mode fracture tests of Arcan samples. Finite element analyses using the J-integral method were performed to calculate the fracture toughness of such samples. The fractographic observations were used to evaluate the mechanism of fracture at different concentrations of nanoparticles.

Findings

The addition of CaCO3 nanoparticles has resulted in a significant increase in the fracture loading of the samples, although this increase was not consistent for all the filling patterns, being more significant for samples with linear and triangular structures. According to the fractographic observations, the creation of uniformly distributed microvoids due to the blunting effect of nanoparticles and 3D stress state at the crack tip in the samples with linear and triangular structures justify the enhancement in the fracture loading by the addition of CaCO3 nanoparticles in the matrix.

Originality/value

There is a significant gap in the knowledge of the effects of different nanoparticles in the polymer samples produced by the fused filament fabrication process. One of such nanoparticles is an inorganic CaCO3 nanoparticle that has been frequently used as nanofillers to improve the thermomechanical properties of thermoplastic polymers. Here, experimental and numerical studies have been conducted to investigate the effects of such nanoadditives on the mechanical and fracture behavior of 3D printed samples.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 February 2023

Mirsadegh Seyedzavvar

This paper aims to study the effects of inorganic CaCO3 nanoadditives in the polylactic acid (PLA) matrix and fused filament fabrication (FFF) process parameters on the mechanical…

Abstract

Purpose

This paper aims to study the effects of inorganic CaCO3 nanoadditives in the polylactic acid (PLA) matrix and fused filament fabrication (FFF) process parameters on the mechanical characteristics of 3D-printed components.

Design/methodology/approach

The PLA filaments containing different levels of CaCO3 nanoparticles have been produced by mix-blending/extrusion process and were used to fabricate tensile and three-point bending test samples in FFF process under various sets of printing speed (PS), layer thickness (LT), filling ratio (FR) and printing pattern (PP) under a Taguchi L27 orthogonal array design. The quantified values of mechanical characteristics of 3D-printed samples in the uniaxial and the three-point bending experiments were modeled and optimized using a hybrid neural network/particle swarm optimization algorithm. The results of this hybrid scheme were used to specify the FFF process parameters and the concentration of nanoadditive in the matrix that result in the maximum mechanical properties of fabricated samples, individually and also in an accumulative response scheme. Diffraction scanning calorimetry (DSC) tests were conducted on a number of samples and the results were used to interpret the variations observed in the response variables of fabricated components against the FFF parameters and concentration of CaCO3 nanoadditives.

Findings

The results of optimization in an accumulative scheme showed that the samples of linear PP, fabricated at high PS, low LT and at 100% FR, while containing 0.64% of CaCO3 nanoadditives in the matrix, would possess the highest mechanical characteristics of 3D-printed PLA components.

Originality/value

FFF is a widely accepted additive manufacturing technique in production of different samples, from prototypes to the final products, in various sectors of industry. The incorporation of chopped fibers and nanoparticles has been introduced recently in a few articles to improve the mechanical characteristics of produced components in FFF technique. However, the effectiveness of such practice is strongly dependent on the extrusion parameters and composition of polymer matrix.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4