Search results
1 – 10 of 351W.L. Yao and Ming C. Leu
This paper presents a numerical and experimental investigation of ceramic shell cracking during the burnout process in investment casting with internally webbed laser…
Abstract
This paper presents a numerical and experimental investigation of ceramic shell cracking during the burnout process in investment casting with internally webbed laser stereolithography patterns. Considered are the cracking temperature of the ceramic shell, the buckling temperature of the web link, and the glass transition temperature of the epoxy resin. Our hypothesis is that shell cracking will occur if the ceramic rupture temperature is lower than the temperature of glass transition and the temperature of web buckling. This hypothesis is validated by a good agreement we obtained between experimental observations and numerical simulations. It is found that the shell cracking and web link buckling are strongly related to the cross‐sectional dimensions and span length of the web structure and the shell thickness, and that shell cracking can be prevented by buckling of the epoxy webbed pattern in early stages of the burnout process.
Details
Keywords
Frances D. Bryant, Guanghua Sui and Ming C. Leu
Rapid freeze prototyping is a relatively new solid freeform fabrication process, which builds a three‐dimensional part according to a CAD model by depositing and freezing water…
Abstract
Rapid freeze prototyping is a relatively new solid freeform fabrication process, which builds a three‐dimensional part according to a CAD model by depositing and freezing water droplets layer by layer. A study on the effects of RFP process parameters including the nozzle scanning speed, droplet size, and droplet frequency in building ice parts with a single‐nozzle work head is made. Presented in this paper are the results of this study which indicate that these process parameters determine the ice layer thickness and ice line width, which in turn determine the surface roughness and the waiting time required after depositing each layer of water (i.e. between successive layers) during the ice part building process.
Details
Keywords
Tunay Turk, Cesar E. Dominguez, Austin T. Sutton, John D. Bernardin, Jonghyun Park and Ming C. Leu
This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous…
Abstract
Purpose
This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous pattern welding (CPW) (line-raster scanning). The SPW strategy involves generating a sequence of overlapping spot welds on the metal foil, allowing the laser to form dense and uniform weld beads. This in turn reduces thermal gradients, promotes material consolidation and helps mitigate process-related risks such as thermal cracking, porosity, keyholing and Marangoni effects.
Design/methodology/approach
304L stainless steel (SS) feedstock is used to fabricate test specimens using the LFP system. Imaging techniques are used to examine the melt pool dimensions and layer bonding. In addition, the parts are evaluated for residual stresses, mechanical strength and grain size.
Findings
Compared to CPW, SPW provides a more reliable heating/cooling relationship that is less dependent on part geometry. The overlapping spot welds distribute heat more evenly, minimizing the risk of elevated temperatures during the AM process. In addition, the resulting dense and uniform weld beads contribute to lower residual stresses in the printed part.
Originality/value
To the best of the authors’ knowledge, this is the first study to thoroughly investigate SPW as a scanning strategy using the LFP process. In general, SPW presents a promising strategy for securing embedded sensors into LFP parts while minimizing residual stresses.
Details
Keywords
Frances D. Bryant and Ming C. Leu
The purpose of this paper is to develop a physics‐based model that can predict how a main build material of water interacts with a water‐soluble sacrificial support material in…
Abstract
Purpose
The purpose of this paper is to develop a physics‐based model that can predict how a main build material of water interacts with a water‐soluble sacrificial support material in the rapid freeze prototyping (RFP) process.
Design/methodology/approach
RFP uses water freezing into ice in a layer‐by‐layer manner as a main build material to create ice structures with complex geometries in a sufficiently cool environment. A eutectic dextrose‐water solution is used as a sacrificial support material. The supported areas in an ice structure are removed by placing the fabricated structure in an environment of appropriate temperature.
Findings
Two methods of concentration modeling have been developed to predict the interaction between the main and support materials around their interface region. The two models are described in detail and their predictions are compared to experimentally measured data. The experimental height data compared to the simulation result based on the concentration models agrees to within 6 percent for various build ambient temperatures. As ambient temperatures decreased, diffusion between the two materials also decreased.
Originality/value
The results obtained from this paper can be used as an aid in building complex ice parts in the RFP process so that minimal interaction between the main and support materials can be attained. An understanding of the interaction occurring during fabrication is provided with the concentration models. The method used to develop the concentration models can be applied to other layered manufacturing processes when using two miscible materials.
Details
Keywords
Chia-Hung Hung, Tunay Turk, M. Hossein Sehhat and Ming C. Leu
This paper aims to present the development and experimental study of a fully automated system using a novel laser additive manufacturing technology called laser foil printing…
Abstract
Purpose
This paper aims to present the development and experimental study of a fully automated system using a novel laser additive manufacturing technology called laser foil printing (LFP), to fabricate metal parts layer by layer. The mechanical properties of parts fabricated with this novel system are compared with those of comparable methodologies to emphasize the suitability of this process.
Design/methodology/approach
Test specimens and parts with different geometries were fabricated from 304L stainless steel foil using an automated LFP system. The dimensions of the fabricated parts were measured, and the mechanical properties of the test specimens were characterized in terms of mechanical strength and elongation.
Findings
The properties of parts fabricated with the automated LFP system were compared with those of parts fabricated with the powder bed fusion additive manufacturing methods. The mechanical strength is higher than those of parts fabricated by the laser powder bed fusion and directed energy deposition technologies.
Originality/value
To the best knowledge of authors, this is the first time a fully automated LFP system has been developed and the properties of its fabricated parts were compared with other additive manufacturing methods for evaluation.
Details
Keywords
Gregory Taylor, Xin Wang, Leah Mason, Ming C. Leu, K. Chandrashekhara, Timothy Schniepp and Ross Jones
The purpose of this paper is to study the flexural behavior of additively manufacture Ultem 1010 parts. Fused deposition modeling (FDM) process has become one of most widely used…
Abstract
Purpose
The purpose of this paper is to study the flexural behavior of additively manufacture Ultem 1010 parts. Fused deposition modeling (FDM) process has become one of most widely used additive manufacturing methods. The process provides the capability of fabricating complicated shapes through the extrusion of plastics onto a print surface in a layer-by-layer structure to build three-dimensional parts. The flexural behavior of FDM parts are critical for the evaluation and optimization of both material and process.
Design/methodology/approach
This study focuses on the performance of FDM solid and sparse-build Ultem 1010 specimens. Flexure tests (three-point bend) are performed on solid-build coupons with varying build orientation and raster angle. These parameters are investigated through a full-factorial design of experiments (DOE) to determine optimal build parameters. Air gap, raster width and contour width are held constant. A three-dimensional nonlinear finite element model is built to simulate the flexural behavior of the FDM parts.
Findings
Experimental results include flexure properties such as yield strength and modulus, as well as analysis of the effect of change in build parameters on material properties. The sparse-build FDM parts chosen from the experimental tests are simulated based on this developed model. Thermo-mechanical simulation results show that the finite element simulation and experimental tests are in good agreement. The simulation can be further extended to other complicated FDM parts.
Originality/value
From the DOE study, sparse-build coupons with specific build parameters are fabricated and tested for the validation of a finite element simulation.
Details
Keywords
Tieshu Huang, Michael S. Mason, Xiyue Zhao, Gregory E. Hilmas and Ming C. Leu
The purpose of this paper is to develop an inexpensive and environmentally friendly solid freeform fabrication technique, called the freeze‐form extrusion fabrication (FEF), and…
Abstract
Purpose
The purpose of this paper is to develop an inexpensive and environmentally friendly solid freeform fabrication technique, called the freeze‐form extrusion fabrication (FEF), and use this technique in advanced ceramic fabrication.
Design/methodology/approach
FEF uses a highly loaded aqueous ceramic paste (≥50 vol.% solids loading) with a small quantity (∼2 vol.%) of organic binder to fabricate a ceramic green part layer by layer with a computer‐controlled 3D gantry machine at a temperature below the freezing point of the paste. Further, a freeze‐drying technique is used for preventing deformation and the formation of cracks during the green part drying process. Following the freeze‐drying, the ceramic green part undergoes binder removal and is sintered to near full density.
Findings
Extrudable, alumina pastes of high solids loading and process parameters for FEF processing of these pastes have been developed. Paste rheological properties and stability, extrusion rate, 3D gantry motion speed and other process parameters strongly affect the quality of the final ceramic parts. The minimum deposition angle, which reflects the maximum amount of extrusion offset to produce components with overhanging features without using support materials, is strongly related to the fabrication (environment) temperature. The lower the fabrication temperature, the lower the minimum deposition angle that could be achieved. Four point bending flexure strengths of the FEF processed Al2O3 test samples were 219 and 198 MPa for longitudinally deposited and transversely deposited samples, respectively. Major defects, which limited the strength of the materials, were due to under‐filling during the extrusion.
Originality/value
Successful development of the FEF technique will introduce a new approach to manufacturing ceramic materials into useful, complex shapes and components. The significant advantages of this technique include the use of environmentally friendly processing medium (water), inexpensive method of medium removal (freeze‐drying), and a much smaller quantity of organic binder to remove by pyrolysis techniques. The products can be sintered to near full density.
Details
Keywords
Krishna C R Kolan, Albin Thomas, Ming C Leu and Greg Hilmas
The purpose of this paper is to utilize the selective laser sintering (SLS) process to fabricate scaffolds with complex pore shapes and investigate the effects of pore geometry in…
Abstract
Purpose
The purpose of this paper is to utilize the selective laser sintering (SLS) process to fabricate scaffolds with complex pore shapes and investigate the effects of pore geometry in vitro. The pore geometry of scaffolds intended for use in bone repair is one of the most important parameters used to determine the rate of bone regeneration.
Design/methodology/approach
Scaffolds with five different architectures, having approximately 50 per cent porosity, were fabricated with silicate (13–93) and borate (13–93B3)-based bioactive glasses using the SLS process. An established late-osteoblasts/early-osteocytes cell line was used to perform cell proliferation tests on the scaffolds. The cell-seeded scaffolds were incubated for two, four and six days followed by MTT assay to quantify the metabolically active cells.
Findings
The results indicated that the cells proliferate significantly more on the scaffolds which mimic the trabecular bone architecture compared to traditional lattice structures. The surface roughness of the SLS-fabricated scaffolds drives the initial cell proliferation which is followed by curvature-driven cell proliferation.
Originality/value
There have been very few studies on the effects of pore geometry on tissue growth and the existing reports do not provide clear indications. Instead of using bio-polymer or titanium-based scaffolds, we use bioactive glass scaffolds. The results obtained from this study add to the understanding of the effect of pore geometry on cell proliferation, which is based on the experimental data and analysis of the scaffolds’ surface curvature.
Details
Keywords
Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang
Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…
Abstract
Purpose
Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.
Design/methodology/approach
Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.
Findings
The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.
Originality/value
The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.
Details