Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 February 1990

Alphose Zingoni and Milija N. Pavlović

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation…

38

Abstract

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation (often employed as a benchmark for numerical models). The study is based on a comparison between Geckeler's approach and a related, but ‘superior’ approximation which, for practical purposes, may be considered to be exact. Conclusions are drawn from the results of a parametric investigation that encompasses various loading types, boundary conditions and shell geometries (i.e. springing angles and slenderness ratios).

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 1 March 1986

Michael D. Kotsovos and Milija N. Pavlović

A non‐linear finite element program for concrete structures is outlined, with emphasis on the material modelling. It is shown that the package can be used with confidence in the…

116

Abstract

A non‐linear finite element program for concrete structures is outlined, with emphasis on the material modelling. It is shown that the package can be used with confidence in the analysis of practical structural forms. In addition, there is considerable potential for the application of the program to research and design.

Details

Engineering Computations, vol. 3 no. 3
Type: Research Article
ISSN: 0264-4401

Access Restricted. View access options
Article
Publication date: 30 January 2024

Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong and Sheng Liu

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and…

101

Abstract

Purpose

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.

Design/methodology/approach

The authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.

Findings

The authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.

Originality/value

Originally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 3 of 3
Per page
102050