Search results
1 – 10 of 44Igor Miroshnichenko, Mikhail Sheremet and Ali J. Chamkha
The purpose of this paper is to conduct a numerical analysis of transient turbulent natural convection combined with surface thermal radiation in a square cavity with a local…
Abstract
Purpose
The purpose of this paper is to conduct a numerical analysis of transient turbulent natural convection combined with surface thermal radiation in a square cavity with a local heater.
Design/methodology/approach
The domain of interest includes the air-filled cavity with cold vertical walls, adiabatic horizontal walls and isothermal heater located on the bottom cavity wall. It is assumed in the analysis that the thermophysical properties of the fluid are independent of temperature and the flow is turbulent. Surface thermal radiation is considered for more accurate analysis of the complex heat transfer inside the cavity. The governing equations have been discretized using the finite difference method with the non-uniform grid on the basis of the special algebraic transformation. Turbulence was modeled using the k–ε model. Simulations have been carried out for different values of the Rayleigh number, surface emissivity and location of the heater.
Findings
It has been found that the presence of surface radiation leads to both an increase in the average total Nusselt number and intensive cooling of such type of system. A significant intensification of convective flow was also observed owing to an increase in the Rayleigh number. It should be noted that a displacement of the heater from central part of the bottom wall leads to significant modification of the thermal plume and flow pattern inside the cavity.
Originality/value
An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady turbulent natural convection combined with surface thermal radiation in a square air-filled cavity in the presence of a local isothermal heater. The results would benefit scientists and engineers to become familiar with the analysis of turbulent convective–radiative heat transfer in enclosures with local heaters, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.
Details
Keywords
Nikita Gibanov and Mikhail Sheremet
The purpose of this paper is to study natural convective fluid flow and heat transfer inside a cubical cavity having a local heat source of constant temperature.
Abstract
Purpose
The purpose of this paper is to study natural convective fluid flow and heat transfer inside a cubical cavity having a local heat source of constant temperature.
Design/methodology/approach
The cubical cavity is cooled from two vertical opposite walls and heated from the local heater mounted on the bottom wall, while the rest walls are adiabatic. The governing equations formulated in dimensionless vector potential functions and vorticity vector have been solved using implicit finite difference method of the second-order accuracy. The effects of the Rayleigh number (Ra = 1e+04 – 1e+06), heat source position (l/L = 0.05 – 0.35) and dimensionless time (0 < tau < 100) on velocity and temperature fields, streamlines, isotherms and average Nusselt number at the heat source surface have been analyzed.
Findings
It is found that the extreme left position of the heater (l/L = 0.05) illustrates more essential cooling of the cavity where the thermal plume over the heat source is suppressed by low temperature waves from the cold vertical walls.
Originality/value
The originality of this work is to analyze transient 3D natural convection in a cubical cavity with a heater of triangular shape and compare obtained 3D data with 2D results. It should be noted that for numerical simulation, the authors used vector potential function and vorticity vector that for transient problems allows to reduce the computational time. The results would benefit scientists and engineers to become familiar with the analysis of transient convective heat and mass transfer in 3D domains with local heaters, and the way to predict the properties of convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Details
Keywords
Sivaraj Chinnasamy, S. Priyadharsini and Mikhail Sheremet
This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be…
Abstract
Purpose
This study/paper aims to deal with thermal convection and entropy production of a ferrofluid in an enclosure having an isothermally warmed solid body placed inside. It should be noted that this research deals with a development of passive cooling system for the electronic devices.
Design/methodology/approach
The domain of interest is a square chamber of size L including a rectangular solid block of sizes l1 and l2. Thermal convection of ferrofluid (water–Fe3O4 nanosuspension) is analyzed within this enclosure. The solid body is considered to be isothermal with temperature Th and also its area is L2/9. The vertical borders are cold with temperature Tc and the horizontal boundaries are adiabatic. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the semi-implicit method for pressure-linked equations algorithm on a uniformly staggered mesh. The influence of nanoparticles volume fraction, aspect ratio of the solid block and an irreversibility ratio on energy transport and flow patterns are examined for the Rayleigh number Ra = 107.
Findings
The results show that the nanoparticles concentration augments the thermal transmission and the entropy production increases also, while the augmentation of temperature difference results in a diminution of entropy production. Finally, lower aspect ratio has the significant impact on heat transfer, isotherms, streamlines and entropy.
Originality/value
An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze convective energy transport and entropy generation in a chamber with internal block. To the best of the authors’ knowledge, the effects of irreversibility ratio are scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer and entropy production in enclosures with internal isothermal blocks, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.
Details
Keywords
Ioan Pop, Mikhail Sheremet and Dalia Sabina Cimpean
The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid…
Abstract
Purpose
The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid model.
Design/methodology/approach
The domain of interest is a two-dimensional cavity bounded by an isothermal left wavy wall, adiabatic horizontal flat walls and right flat wall with a partial isothermal zone. To study the behaviour of the nanofluid, a two-phase Buongiorno mathematical model with the effects of the Brownian motion and thermophoresis is used. The governing dimensionless partial differential equations with corresponding boundary conditions were numerically solved by the finite difference method of the second-order accuracy using the algebraic transformation of the physical wavy cavity in a computational rectangular domain. The study has been conducted using the following values of the governing parameters: Ra = 104-106, Le = 10, Pr = 6.26, Nr = 0.1, Nb = 0.1, Nt = 0.1, A = 1, κ = 1-3, b = 0.2, hhs/L = 0.25, h1/L = 0.0-0.75 and τ = 0-0.25.
Findings
It is found that an increase in the undulation number leads to a weak intensification of convective flow and a reduction of
Originality/value
The originality of this work is to analyse the natural convection in a partially heated wavy cavity filled by a nanofluid using Buongiorno’s nanofluid model. The results will benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Details
Keywords
Nikita Gibanov and Mikhail A. Sheremet
The purpose of this paper is to investigate natural convective heat transfer in a cubical cavity with the heat source of a trapezoidal form having a constant temperature.
Abstract
Purpose
The purpose of this paper is to investigate natural convective heat transfer in a cubical cavity with the heat source of a trapezoidal form having a constant temperature.
Design/methodology/approach
The domain of interest is a cubical cavity with two isothermal opposite vertical walls, while other walls are adiabatic. A discrete heater of a trapezoidal shape is located at the bottom wall of the cavity. Governing equations formulated in dimensionless vector potential functions, vorticity vector and temperature with corresponding initial and boundary conditions have been solved numerically using a developed computational code based on the finite difference method.
Findings
The results show that the variation of geometric parameters, such as height, length and size of the local heater, significantly influences the evolution of a temperature field and fluid flow inside the enclosure. The effects of Rayleigh number and time on streamlines, isotherms and average Nusselt number have been studied.
Originality/value
The originality of this work is to explore three-dimensional (3D) natural convection in a cubical cavity with a local heat source of trapezoidal shape, to analyze the effects of heater geometric parameters and to compare obtained 3D data with two-dimensional results.
Details
Keywords
Mikhail A. Sheremet, Ioan Pop and A. Cihat Baytas
This study aims to numerically analyze natural convection of alumina-water nanofluid in a differentially-heated square cavity partially filled with a heat-generating porous…
Abstract
Purpose
This study aims to numerically analyze natural convection of alumina-water nanofluid in a differentially-heated square cavity partially filled with a heat-generating porous medium. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been considered for the description of the nanoparticles transport effect in the present study. Local thermal non-equilibrium approach for the porous layer with the Brinkman-extended Darcy model has been used.
Design/methodology/approach
Dimensionless governing equations formulated using stream function, vorticity and temperature have been solved by the finite difference method. The effects of the Rayleigh number, Ostrogradsky number, Nield number and nanoparticles volume fraction on nanofluid flow, heat and mass transfer have been analyzed.
Findings
It has been revealed that the dimensionless heat transfer coefficient at the fluid/solid matrix interface can be a very good control parameter for the convective flow and heat transfer intensity. The present results are original and new for the study of non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium.
Originality/value
The results of this paper are new and original with many practical applications of nanofluids in the modern industry.
Details
Keywords
Mikhail Sheremet, Teodor Grosan and Ioan Pop
This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.
Abstract
Purpose
This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.
Design/methodology/approach
The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing and anticipated improved stability of the nanofluid. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model.
Findings
It has been found that the Hartmann number suppresses the heat and mass transfer, while the cavity and magnetic field inclination angles characterize a non-monotonic behavior of the all considered parameters. A rise of the Hartmann number leads to a reduction of the influence rate of the magnetic field inclination angle.
Originality/value
The present results are original and new for the study of MHD-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms.
Details
Keywords
Mikhail Sheremet, Ioan Pop, Hakan F. Öztop and Nidal Abu-Hamdeh
The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.
Abstract
Purpose
The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.
Design/methodology/approach
The cavity is heated non-uniformly from the wavy wall and cooled from the right side while it is insulated from the horizontal walls. The physical domain of the problem is transformed into a rectangular geometry in the computational domain using an algebraic coordinate transformation by introducing new independent variables ξ and η. The governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The governing parameters are Rayleigh number (Ra = 1000-100000), Prandtl number (Pr = 6.82), solid volume fraction parameter of nanoparticles (φ = 0.0-0.05), aspect ratio parameter (A = 1), undulation number (κ = 1-3), wavy contraction ratio (b = 0.1-0.3) and dimensionless time (τ = 0-0.27).
Findings
It is found that the average Bejan number is an increasing function of nanoparticle volume fraction and a decreasing function of the Rayleigh number, undulation number and wavy contraction ratio. Also, an insertion of nanoparticles leads to an attenuation of convective flow and enhancement of heat transfer.
Originality
The originality of this work is to analyze the entropy generation in natural convection within a wavy nanofluid cavity using single-phase nanofluid model. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and will be a way to predict the properties of this flow for the possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Details
Keywords
The main purpose of this numerical work is to study free convection of Casson fluid in a square differentially heated cavity taking into account the effects of thermal radiation…
Abstract
Purpose
The main purpose of this numerical work is to study free convection of Casson fluid in a square differentially heated cavity taking into account the effects of thermal radiation and viscous dissipation.
Design/methodology/approach
The cavity is heated from the left vertical wall and cooled from the right vertical wall while horizontal walls are insulated. The governing partial differential equations invoking Rosseland approximation for thermal radiation with corresponding boundary conditions have been solved by finite difference method of the second-order accuracy using dimensionless variables stream function, vorticity and temperature. The governing parameters are Rayleigh number (Ra = 105), Prandtl number (Pr = 0.1, 0.7, 7.0), Casson parameter (γ = 0.1-5.0), radiation parameter (Rd = 0-10), Eckert number (Ec = 0-1.0).
Findings
It is found that an increase in Casson parameter leads to the heat transfer enhancement and fluid flow intensification. While a growth of Eckert number illustrates the heat transfer suppression.
Originality/value
The originality of this work is to analyze for the first-time natural convective fluid flow and heat transfer of a Casson fluid within a differentially heated square cavity under the effects of thermal radiation and viscous dissipation. The results would benefit scientists and engineers to become familiar with the flow behavior of such non-Newtonian fluids, and the way to predict the properties of this flow for possibility of using this specific fluid in various engineering and industrial processes, such as chyme movement in intestine, blood flows, lubrication processes with grease and heavy oils, glass blowing, electronic chips, food stuff, slurries, etc.
Details
Keywords
Stepan Mikhailenko, Mohammad Ghalambaz and Mikhail A. Sheremet
This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The…
Abstract
Purpose
This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The performed analysis deals with a development of passive cooling system for the electronic devices.
Design/methodology/approach
The domain of interest of size H rotating at a fixed angular velocity has heat-conducting solid walls with a constant cooling temperature for the outer boundaries of the vertical walls and with thermal insulation for the outer borders of the horizontal walls. The chamber has a heater on the bottom wall with a time-dependent volumetric heat generation. The internal surfaces of the walls and the energy element are both grey diffusive emitters and reflectors. The fluid is transparent to radiation. Computational model has been written using non-dimensional parameters and worked out by the finite difference technique. The effect of the angular velocity, volumetric heat generation frequency and surface emissivity has been studied and described in detail.
Findings
The results show that growth of the surface emissivity leads to a diminution of the mean heater temperature, while a weak rotation can improve the energy transport for low volumetric thermal generation frequency.
Originality/value
An efficient computational approach has been used to work out this problem. The originality of this work is to analyze complex (conductive–convective–radiative) energy transport in a rotating system with a local element of time-dependent volumetric heat generation. To the best of the authors’ knowledge, an interaction of major heat transfer mechanisms in a rotating system with a heat-generating element is scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of complex heat transfer in rotating enclosures with internal heat-generating units, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.
Details