Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 January 2022

Dan Wang, Yabing Wei, Kang Pan, Jiagang Li and Miaoxin Jiao

This paper aims to investigate the effects of different volume fractions of Al2O3-water nanofluid on flow and heat transfer under chaotic convection conditions in an L-shaped…

104

Abstract

Purpose

This paper aims to investigate the effects of different volume fractions of Al2O3-water nanofluid on flow and heat transfer under chaotic convection conditions in an L-shaped channel, comparing the difference of numerical simulation results between single-phase and Eulerian–Lagrangian models.

Design/methodology/approach

The correctness and accuracy of the two calculation models were verified by comparing with the experimental values in literature. An experimental model of the L-shaped channel was processed, and the laser Doppler velocimeter was used to measure the velocities of special positions in the channel. The simulated values were compared with the experimental results, and the correctness and accuracy of the simulation method were verified.

Findings

The calculated results using the two models are basically consistent. Under the condition of Reynolds number is 500, when the volume fractions of nanofluid range from 1% to 4%, the heat transfer coefficients simulated by single-phase model are 1.49%–25.80% higher than that of pure water, and simulated by Eulerian–Lagrangian model are 3.19%–27.48% higher than that of pure water. Meanwhile, the friction coefficients are barely affected. Besides, there are obvious secondary flow caused by lateral oscillations on the cross sections, and the appearance of secondary flow makes the temperature distributions uniform on the cross section and takes more heat away, thus the heat transfer performance is enhanced.

Originality/value

The originality of this work is to reveal the differences between single-phase and two-phase numerical simulations under different flow states. The combination of chaotic convection and nanofluid indicates the direction for further improving the heat transfer threshold.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1
Per page
102050