Search results

1 – 10 of 20
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 May 2015

Ben Ticha M, Meksi N, Drira N and Mhenni M.F.

Industrial processes in everyday life need to take into consideration environmental safety. This is the major goal of today's scientific research. Textile research is no…

74

Abstract

Industrial processes in everyday life need to take into consideration environmental safety. This is the major goal of today's scientific research. Textile research is no exception. This paper illustrates a green process in which indigo is converted into its water-soluble leuco form by using a reducing agent that is ecologically friendly: 3-hydroxybutanone (C4H8O2). The effect of alkalinity and reducing temperature on the reducing power of C4H8O2 has been evaluated in the absence and presence of indigo. The dyeing quality of the modified cotton resultant of the exhaust process is studied. Cotton modification is carried out by using Denitex BC 200% in order to improve the quality of the exhaustion dyeing process. Modified cotton fibres are characterized through a morphology analysis (by using a SEM), Fourier transform infrared spectroscopy and X-ray diffraction analysis. The performances of the indigo dyeing process are evaluated by measuring the redox potentials generated in the medium with and without indigo, dyeing bath exhaustion (E(%)), and colour yield (K/S) of the coloured cotton at 660 nm, brightness index (B(%)) and dyeing fastness of both the untreated and modified cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. 19 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 8 December 2020

Xiaoyan Li, MengQian Wang, Gang Wu and Jiming Yao

The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with…

172

Abstract

Purpose

The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with electrochemical technology for the reduction of indigo by sodium borohydride.

Design/methodology/approach

According to the K/S value of the dyed cloth sample, find a more suitable ligand for the copper ion in the catholyte. Response surface analysis tests were performed to evaluate the effects of sodium borohydride concentration, sodium hydroxide concentration and copper sulfate pentahydrate concentration on the reduction potential of the dye solution and the K/S value of the dyed fabric samples.

Findings

Sodium gluconate was found to be a more suitable ligand for copper ions in catholyte. The effects of NaOH concentration as well as the interaction of NaBH4 and NaOH on the reduction potential of the catholyte and the K/S value of the dyed fabric samples were extremely significant. The optimal concentrations of NaBH4, NaOH and CuSO4•5H2O were 0.5, 2.5 and 0.65 g/L. In the case of the optimized condition, the absolute value of the reduction potential was 968, and the K/S value was 11.92, which is comparable with that of the conventional reduction process with sodium dithionite.

Originality/value

The divalent copper ion complex combined with electrochemical technology was applied in the process of reducing indigo with NaBH4 at room temperature.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 11 February 2025

Tuna Uysaler, Pelin Altay and Gülay Özcan

Laser fading, commonly used in the denim industry, is a computer-controlled, dry, ecological finishing method whereas conventional methods include high water, energy and time…

9

Abstract

Purpose

Laser fading, commonly used in the denim industry, is a computer-controlled, dry, ecological finishing method whereas conventional methods include high water, energy and time consumption. Resolution and pixel time are crucial parameters of laser source influencing the effect of laser treatment. The purpose of this study is to determine the optimum laser parameters of CO2 laser followed by enzyme washing and to compare the tensile strength and color values of laser-treated denim fabric with that of conventional enzyme-faded.

Design/methodology/approach

Two different indigo-dyed, sulfur bottom-indigo-dyed and only indigo-dyed organic cotton denim fabrics with different unit weights, were lasetreated with different laser parameters and then subjected to 10 min enzyme washing. Tensile strength, abrasion resistance, and change in fabric unit weight were tested. CIE (L*a*b*, ΔE*, h°, C*) color values, color strength (K/S), yellowness and whiteness indexes were measured to identify the color differences. Color fastness tests including washing, rubbing, light, water and perspiration fastness were investigated.

Findings

Most effective laser fading in terms of good mechanical properties and color values was obtained at 40 dpi resolution and 300 µs pixel time.

Originality/value

Conventional enzyme fading of denim fabrics is a wet process and requires a long process time of 40–45 min and high temperatures, leading to high energy and water consumption. Laser fading, on the other hand, is a dry and ecological method, but causes a decrease in mechanical properties of the fabric, and an increase in yellowness. In this study, unlike the similar studies in the literature, denim fading was carried out by a combination of laser treatment followed by only 10 min enzyme washing in order to eliminate or minimize the drawbacks of the denim fading, such as high energy and water consumption for enzyme fading and decrease in mechanical properties of the fabric and increase in yellowness for laser fading. This method was applied to two different dyed denim fabrics, sulfur (bottom) and indigo (top) and laser process conditions were optimized to achieve the desired fading effects compared to conventional enzyme fading.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

152

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. 28 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 12 July 2021

Xiaoyan Li, Zhihui Zhang, Jiming Yao, MengQian Wang and Na Yang

To improve the problems as the heavy burden of sewage treatment and environmental pollution caused by the traditional sodium hydrosulfite reduction dyeing of indigo, this study…

130

Abstract

Purpose

To improve the problems as the heavy burden of sewage treatment and environmental pollution caused by the traditional sodium hydrosulfite reduction dyeing of indigo, this study aims to carry out the direct electrochemical reduction dyeing for indigo with the eco-friendly Cu(II)/sodium borohydride reduction system under normal temperature and pressure conditions.

Design/methodology/approach

The electrochemical behavior of Cu(II)/sodium borohydride reduction system was investigated by cyclic voltammetry. And, the dyeing performance of the Cu(II)/sodium borohydride reduction system was developed by optimizing the concentration of copper sulfate in the anode electrolyte, applied voltage and reduction time via single-factor and orthogonal integrated analysis.

Findings

The dyeing performance of the Cu(II)/sodium borohydride reduction system is superior to that of the traditional reduction dyeing with sodium hydrosulfite. In the case of the optimized condition, the soaping fastness and dry/wet rubbing fastness of the dyed fabric in the two reduction dyeing processes were basically comparable, the K/S value of electrocatalytic reduction of indigo by Cu(II)/NaBH4 is 11.81, which is higher than that obtained by traditional sodium hydrosulfite reduction dyeing of indigo.

Originality/value

The innovative electrocatalytic reduction system applied herein uses sodium borohydride as the hydrogen source combined with Cu(II) complex as the catalyst, which can serve as a medium for electron transfer and active the dye molecule to make it easier to be reduced. The electrochemical dyeing strategy presented here provides a new idea to improve the reduction dyeing performance of indigo by sodium borohydride.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 5 May 2021

Scolastica Manyim, Ambrose Kipchumba Kiprop, Josphat Igadwa Mwasiagi, Cleophas Mecha Achisa and Mark Peter Odero

The majority of the synthetic dyes have been found to be non-biodegradable, toxic and carcinogenic. As a result, there has been a growing trend toward the use of natural dyes as…

137

Abstract

Purpose

The majority of the synthetic dyes have been found to be non-biodegradable, toxic and carcinogenic. As a result, there has been a growing trend toward the use of natural dyes as alternates to synthetic dyes. This shift calls for more research to come up with more sources of natural dyes to satisfy their increasing demand. Euclea divinorum plant has been used traditionally as a source of dye, however, its textile dyeing properties have not been studied. This study aims to determine the textile dyeing properties of E. divinorum extract.

Design/methodology/approach

Optimization of dyeing conditions of Euclea divinorum natural dye extract on the cotton fabric was done using response surface methodology (RSM). The combined effects of examined dyeing conditions on the relative color strength (K/S) were studied using a central composite experimental design. Analysis of variance (ANOVA) was used to determine the significance of the statistical model generated for the study. Mordanting effects were measured using standard ISO wash, rub and lightfastness tests.

Findings

The optimum dyeing conditions were found to be 68 min, pH 3.3 and 82°C with color strength 0.609. Temperature and pH showed some interaction effects during the dyeing experiments. The predicted optimum K/S value was validated experimentally using the optimum conditions and was found to be in agreement with the experimental values. All the metallic mordants used enhanced the color strength and provided a variety of brown shades, therefore, a suitable alternative for the toxic synthetic dyes.

Originality/value

Optimization of dyeing conditions of Euclea divinorum dye on cotton using RSM and mordanting at optimal conditions has not been done elsewhere.

Details

Research Journal of Textile and Apparel, vol. 26 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton…

304

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. 28 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 27 January 2020

Hossein Barani and Homa Maleki

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red…

213

Abstract

Purpose

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red Cabbage as a natural colorant to obtain different colors on wool yarn, as well as specify the optimum dyeing condition by response surface methodology for obtaining a blue color.

Design/methodology/approach

The effect of dyeing process parameters such as mordant concentration, dyeing time, pH of dyeing bath and dyeing temperature examined in the color characteristics of the dyed wool samples.

Findings

The obtained results indicated that the diverse colors achieve by varying the dyeing process parameters, which is in the range of 26° up to 271°. The non-mordanted dyed wool samples showed a red and red brownish color (Hue angle = 26° up to 70°), and the mordanted dyed wool samples showed a blue and blue-greenish color (Hue angle = 230° up to 271°). The obtained blue color with the optimized dyeing condition presented a considerable good wash and lightfastness.

Originality/value

This study provides a promising application of Red Cabbage as a natural colorant for obtaining different colors by varying the dyeing process parameters such as pH and stannous ion concentrations. The stannous ions yielded a co-pigmentation and presented a blue color on wool fibers, which is extremely difficult to obtain with natural colorant.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 29 September 2023

Lutamyo Nambela

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the…

213

Abstract

Purpose

The purpose of this study was to review the information on the scientific efforts and achievements in sustainable industrial textile applications of natural colourants. Then the paper suggests the ways of improving the industrial textile applications of plant-based colourants.

Design/methodology/approach

The literature on the chemistry, sources and extraction of plant-based natural colourants was reviewed. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested. Lastly, the current situation of industrial application of natural dyes in textiles is presented.

Findings

Despite the scientific achievement to overcome the challenges of natural colourants for textiles, the global industrial application of natural colourants is still low. Inadequate knowledge of the dyers results into poor performance of the natural dyed textile. The natural dyed textiles are expensive due to the scarcity of raw materials for manufacturing of natural colourants. The selection of suitable extraction, application methods and type of substrate should consider the chemistry of the particular colourant. The society should be educated about the benefits of natural dyed textiles. Cultivation of colourant-bearing plants should be promoted to meet the industrial material demand.

Originality/value

The paper provides a synthesized collection of information about the source, chemistry, extraction, textile application and challenges of plant-based natural colourants. The reviewed information was analysed and synthesised to provide techniques for selecting sustainable extraction methods, possible sustainable textile applications of natural colourants and the challenges which hinder industrial textile applications of plant-based natural colourants. The ways of overcoming the challenges of the industrial textile applications of plant natural colourants were suggested.

Details

Research Journal of Textile and Apparel, vol. 29 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 22 October 2018

Monthon Nakpathom, Buppha Somboon, Nootsara Narumol and Rattanaphol Mongkholrattanasit

The purpose of this study is to investigate the possibility of dyeing polyester (PET) fabric with natural dye extracted from annatto seeds using high temperature dyeing method.

357

Abstract

Purpose

The purpose of this study is to investigate the possibility of dyeing polyester (PET) fabric with natural dye extracted from annatto seeds using high temperature dyeing method.

Design/methodology/approach

PET fabric was dyed with annatto extract by varying dyeing parameters (temperature, time, pH and dye concentration) to determine the optimum dyeing conditions. The influences of KAl(SO4)2, FeSO4, gallnut mordants or a commercial UV absorber on colour yield and fastness properties were further studied.

Findings

Optimum results were obtained when the fabric was dyed at 130°C for 30 min in a dyebath containing 15 per cent (owf) annatto dye at pH 6. The dyed fabric had an orange shade and exhibited good to excellent wash, crock, perspiration fastness and fair light fastness. Further dyeing with mordants or UV absorber mostly resulted in lower colour yield and similar fastness properties.

Research limitations/implications

Although the light fastness was slightly improved to moderate level for the sample with UV absorber, a noticeable colour staining on cotton portion of multi-fibre fabric occurred when subjected to standard washing test. Compared to C.I. Disperse Orange 73, the annatto dye exhibited comparable colour fastness but had inferior light fastness when dyed at approximately the same colour strength.

Originality/value

Natural colourants from annatto seeds can be used to dye PET fabric at high temperature without mordants, yielding deep orange shade and satisfactory fastness properties. This study provides a promising application to reduce the environmental impact of synthetic dyes.

Details

Pigment & Resin Technology, vol. 48 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 20
Per page
102050