Parastoo Pourvahidi, Mesut B. Ozdeniz and Polat Hancer
This research will analyze the traditional Iranian buildings according to the climatic factors by the use of graph theory. By this way, the hypothesis that climate factor has a…
Abstract
This research will analyze the traditional Iranian buildings according to the climatic factors by the use of graph theory. By this way, the hypothesis that climate factor has a major effect on the organization of the spaces in traditional Iranian buildings will be tested. Access graphs have been used to clarify the connectivity and depth of a building’s spaces from the socio-cultural point of view. However, it cannot be applied to climate studies. Thus, this study developed the existing technique to define building layouts in terms of climate and thermal comfort. The thermal comfort was graphically evaluated by the two main factors like solar gain and wind effect, with the use of a simple multi-attribute rating technique. All the analysis had been done in the interval of zero (the worst condition) to three (the best condition). The proposed orientation-weighted graph method proved that the thermal comfort factors of the buildings under study match the seasonal movements of their inhabitants. Consequently, the developed orientation-weighted graph method can be used to study space organization in traditional Iranian building in terms of solar gain and wind effect.
Details
Keywords
N. Gözde Oral and Mesut B. Özdeniz
It is a well-known fact that global warming is the extraordinary threat facing the world. The main reasons of these are human activities. Human beings have been contributing to…
Abstract
It is a well-known fact that global warming is the extraordinary threat facing the world. The main reasons of these are human activities. Human beings have been contributing to the global warming in different ways for many years. Right material and product selection are some of the most important factors in the process of eliminating the negative effects of constructions on the natural environment and users. The life cycle of building materials involves the processes in which the products are extracted from the source. These processes are the stages of production, transportation, construction, use, demolition and destruction. Making wrong decisions in the selection and use of building materials may cause negative effects in the environment. The major purpose of this study is to to examine the embodied energy of of the traditional and comtemporary building materials according to the characteristics of the local climate. It will answer the question of; “What the embodied energy of a house was in the past and now” in Northern Cyprus. It will help to find out building materials with low embodied energy. There is no published database prepared for or in Northern Cyprus. In order to measure and evaluate the embodied energy of buildings and construction products in the world, there are no integrated systems in the Northern Cyprus at this point, while different countries have unique systems depending on the environmental, economic and social conditions of those countries. Measuring and controlling the environmental performance of environmental development is essential for the sustainable development of the Northern Cyprus.
By using the The Inventory of Carbon & Energy (ICE) program the embodied carbon statuses, embodied energy and transport energy and manufacture energy were discussed for each building material. As a result of this research it was found that locally produced or locally existing materials do not always give the best result in terms of embodied energy all the time. The energy consumption of building materials used in buildings and their associated carbon emissions will assist in the selection of environmentally friendly materials.