Ben Ticha M, Meksi N, Drira N and Mhenni M.F.
Industrial processes in everyday life need to take into consideration environmental safety. This is the major goal of today's scientific research. Textile research is no…
Abstract
Industrial processes in everyday life need to take into consideration environmental safety. This is the major goal of today's scientific research. Textile research is no exception. This paper illustrates a green process in which indigo is converted into its water-soluble leuco form by using a reducing agent that is ecologically friendly: 3-hydroxybutanone (C4H8O2). The effect of alkalinity and reducing temperature on the reducing power of C4H8O2 has been evaluated in the absence and presence of indigo. The dyeing quality of the modified cotton resultant of the exhaust process is studied. Cotton modification is carried out by using Denitex BC 200% in order to improve the quality of the exhaustion dyeing process. Modified cotton fibres are characterized through a morphology analysis (by using a SEM), Fourier transform infrared spectroscopy and X-ray diffraction analysis. The performances of the indigo dyeing process are evaluated by measuring the redox potentials generated in the medium with and without indigo, dyeing bath exhaustion (E(%)), and colour yield (K/S) of the coloured cotton at 660 nm, brightness index (B(%)) and dyeing fastness of both the untreated and modified cotton fabrics.
Details
Keywords
Xiaoyan Li, MengQian Wang, Gang Wu and Jiming Yao
The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with…
Abstract
Purpose
The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with electrochemical technology for the reduction of indigo by sodium borohydride.
Design/methodology/approach
According to the K/S value of the dyed cloth sample, find a more suitable ligand for the copper ion in the catholyte. Response surface analysis tests were performed to evaluate the effects of sodium borohydride concentration, sodium hydroxide concentration and copper sulfate pentahydrate concentration on the reduction potential of the dye solution and the K/S value of the dyed fabric samples.
Findings
Sodium gluconate was found to be a more suitable ligand for copper ions in catholyte. The effects of NaOH concentration as well as the interaction of NaBH4 and NaOH on the reduction potential of the catholyte and the K/S value of the dyed fabric samples were extremely significant. The optimal concentrations of NaBH4, NaOH and CuSO4•5H2O were 0.5, 2.5 and 0.65 g/L. In the case of the optimized condition, the absolute value of the reduction potential was 968, and the K/S value was 11.92, which is comparable with that of the conventional reduction process with sodium dithionite.
Originality/value
The divalent copper ion complex combined with electrochemical technology was applied in the process of reducing indigo with NaBH4 at room temperature.
Details
Keywords
Xiaoyan Li, Zhihui Zhang, Jiming Yao, MengQian Wang and Na Yang
To improve the problems as the heavy burden of sewage treatment and environmental pollution caused by the traditional sodium hydrosulfite reduction dyeing of indigo, this study…
Abstract
Purpose
To improve the problems as the heavy burden of sewage treatment and environmental pollution caused by the traditional sodium hydrosulfite reduction dyeing of indigo, this study aims to carry out the direct electrochemical reduction dyeing for indigo with the eco-friendly Cu(II)/sodium borohydride reduction system under normal temperature and pressure conditions.
Design/methodology/approach
The electrochemical behavior of Cu(II)/sodium borohydride reduction system was investigated by cyclic voltammetry. And, the dyeing performance of the Cu(II)/sodium borohydride reduction system was developed by optimizing the concentration of copper sulfate in the anode electrolyte, applied voltage and reduction time via single-factor and orthogonal integrated analysis.
Findings
The dyeing performance of the Cu(II)/sodium borohydride reduction system is superior to that of the traditional reduction dyeing with sodium hydrosulfite. In the case of the optimized condition, the soaping fastness and dry/wet rubbing fastness of the dyed fabric in the two reduction dyeing processes were basically comparable, the K/S value of electrocatalytic reduction of indigo by Cu(II)/NaBH4 is 11.81, which is higher than that obtained by traditional sodium hydrosulfite reduction dyeing of indigo.
Originality/value
The innovative electrocatalytic reduction system applied herein uses sodium borohydride as the hydrogen source combined with Cu(II) complex as the catalyst, which can serve as a medium for electron transfer and active the dye molecule to make it easier to be reduced. The electrochemical dyeing strategy presented here provides a new idea to improve the reduction dyeing performance of indigo by sodium borohydride.
Details
Keywords
Tuna Uysaler, Pelin Altay and Gülay Özcan
Laser fading, commonly used in the denim industry, is a computer-controlled, dry, ecological finishing method whereas conventional methods include high water, energy and time…
Abstract
Purpose
Laser fading, commonly used in the denim industry, is a computer-controlled, dry, ecological finishing method whereas conventional methods include high water, energy and time consumption. Resolution and pixel time are crucial parameters of laser source influencing the effect of laser treatment. The purpose of this study is to determine the optimum laser parameters of CO2 laser followed by enzyme washing and to compare the tensile strength and color values of laser-treated denim fabric with that of conventional enzyme-faded.
Design/methodology/approach
Two different indigo-dyed, sulfur bottom-indigo-dyed and only indigo-dyed organic cotton denim fabrics with different unit weights, were lasetreated with different laser parameters and then subjected to 10 min enzyme washing. Tensile strength, abrasion resistance, and change in fabric unit weight were tested. CIE (L*a*b*, ΔE*, h°, C*) color values, color strength (K/S), yellowness and whiteness indexes were measured to identify the color differences. Color fastness tests including washing, rubbing, light, water and perspiration fastness were investigated.
Findings
Most effective laser fading in terms of good mechanical properties and color values was obtained at 40 dpi resolution and 300 µs pixel time.
Originality/value
Conventional enzyme fading of denim fabrics is a wet process and requires a long process time of 40–45 min and high temperatures, leading to high energy and water consumption. Laser fading, on the other hand, is a dry and ecological method, but causes a decrease in mechanical properties of the fabric, and an increase in yellowness. In this study, unlike the similar studies in the literature, denim fading was carried out by a combination of laser treatment followed by only 10 min enzyme washing in order to eliminate or minimize the drawbacks of the denim fading, such as high energy and water consumption for enzyme fading and decrease in mechanical properties of the fabric and increase in yellowness for laser fading. This method was applied to two different dyed denim fabrics, sulfur (bottom) and indigo (top) and laser process conditions were optimized to achieve the desired fading effects compared to conventional enzyme fading.
Details
Keywords
Monthon Nakpathom, Buppha Somboon, Nootsara Narumol and Rattanaphol Mongkholrattanasit
The purpose of this study is to investigate the possibility of dyeing polyester (PET) fabric with natural dye extracted from annatto seeds using high temperature dyeing method.
Abstract
Purpose
The purpose of this study is to investigate the possibility of dyeing polyester (PET) fabric with natural dye extracted from annatto seeds using high temperature dyeing method.
Design/methodology/approach
PET fabric was dyed with annatto extract by varying dyeing parameters (temperature, time, pH and dye concentration) to determine the optimum dyeing conditions. The influences of KAl(SO4)2, FeSO4, gallnut mordants or a commercial UV absorber on colour yield and fastness properties were further studied.
Findings
Optimum results were obtained when the fabric was dyed at 130°C for 30 min in a dyebath containing 15 per cent (owf) annatto dye at pH 6. The dyed fabric had an orange shade and exhibited good to excellent wash, crock, perspiration fastness and fair light fastness. Further dyeing with mordants or UV absorber mostly resulted in lower colour yield and similar fastness properties.
Research limitations/implications
Although the light fastness was slightly improved to moderate level for the sample with UV absorber, a noticeable colour staining on cotton portion of multi-fibre fabric occurred when subjected to standard washing test. Compared to C.I. Disperse Orange 73, the annatto dye exhibited comparable colour fastness but had inferior light fastness when dyed at approximately the same colour strength.
Originality/value
Natural colourants from annatto seeds can be used to dye PET fabric at high temperature without mordants, yielding deep orange shade and satisfactory fastness properties. This study provides a promising application to reduce the environmental impact of synthetic dyes.
Details
Keywords
Monthon Nakpathom, Buppha Somboon, Nootsara Narumol and Rattanaphol Mongkholrattanasit
The present study aims to focus on the feasibility of using an aqueous extract from the fruit shell of Camellia oleifera Abel as a source of natural colourant in printing-paste…
Abstract
Purpose
The present study aims to focus on the feasibility of using an aqueous extract from the fruit shell of Camellia oleifera Abel as a source of natural colourant in printing-paste preparation for pigment printing of cotton fabric. The effects of pre- and post-mordanting with three common metallic mordants, that is AlK(SO4)2, CuSO4 and FeSO4 on colour yield and colour fastness properties are also investigated.
Design/methodology/approach
The printing paste was prepared by mixing the concentrated Camellia oleifera Abel fruit shell extract solution with commercially available synthetic thickener and binder. The fabric sample was printed with the prepared printing paste using a flat-screen printing technique. To determine the effects of pre- and post-mordanting, AlK(SO4)2, CuSO4 and FeSO4 mordant aqueous solutions with various concentrations were applied using the pad-dry technique. Comparisons between printing with and without mordants were evaluated in terms of colour strength (K/S values) and colour fastness to washing, light, crocking and perspiration.
Findings
Without the mordants, the printed fabric had a yellowish brown shade with acceptable colour fastness properties, that is fair to good wash fastness, moderate light fastness, good to very good crocking fastness and fair to good perspiration fastness. The use of mordants, especially CuSO4 and FeSO4, not only enhanced colour strength but also imparted different colours to the fabric. Compared to the unmordanted fabrics, colour fastness properties were mostly comparable or improved in the mordanted fabrics depending on the type and concentration of mordants.
Research limitations/implications
Although in the case of CuSO4 the light fastness was increased to a good to very good level, it is recommended that the final print be produced with a concentration of less than 0.125 gL−1 to yield the print with the residual amount of Cu metal under the limit, that is less than 50 ppm as regulated by the Oeko-Tex® standard.
Practical implications
The obtained prints from Camellia oleifera Abel fruit shell extract provided shades with satisfactory colour fastness to washing, light, crocking and perspiration. The extract from Camellia oleifera Abel fruit shell has the potential to be used as an alternative to synthetic dye in the textile industry.
Originality/value
The use of Camellia oleifera Abel fruit shells, which are considered as abundant byproducts of tea seed oil production, as natural colouring agents for pigment printing of cotton fabric has been reported for the first time. It will minimise the environmental impact of this waste and create more valuable textile products.
Details
Keywords
Tuna Uysaler, Pelin Altay and Gülay Özcan
In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…
Abstract
Purpose
In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.
Design/methodology/approach
Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.
Findings
Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.
Originality/value
With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.
Details
Keywords
Scolastica Manyim, Ambrose Kipchumba Kiprop, Josphat Igadwa Mwasiagi, Cleophas Mecha Achisa and Mark Peter Odero
The majority of the synthetic dyes have been found to be non-biodegradable, toxic and carcinogenic. As a result, there has been a growing trend toward the use of natural dyes as…
Abstract
Purpose
The majority of the synthetic dyes have been found to be non-biodegradable, toxic and carcinogenic. As a result, there has been a growing trend toward the use of natural dyes as alternates to synthetic dyes. This shift calls for more research to come up with more sources of natural dyes to satisfy their increasing demand. Euclea divinorum plant has been used traditionally as a source of dye, however, its textile dyeing properties have not been studied. This study aims to determine the textile dyeing properties of E. divinorum extract.
Design/methodology/approach
Optimization of dyeing conditions of Euclea divinorum natural dye extract on the cotton fabric was done using response surface methodology (RSM). The combined effects of examined dyeing conditions on the relative color strength (K/S) were studied using a central composite experimental design. Analysis of variance (ANOVA) was used to determine the significance of the statistical model generated for the study. Mordanting effects were measured using standard ISO wash, rub and lightfastness tests.
Findings
The optimum dyeing conditions were found to be 68 min, pH 3.3 and 82°C with color strength 0.609. Temperature and pH showed some interaction effects during the dyeing experiments. The predicted optimum K/S value was validated experimentally using the optimum conditions and was found to be in agreement with the experimental values. All the metallic mordants used enhanced the color strength and provided a variety of brown shades, therefore, a suitable alternative for the toxic synthetic dyes.
Originality/value
Optimization of dyeing conditions of Euclea divinorum dye on cotton using RSM and mordanting at optimal conditions has not been done elsewhere.
Details
Keywords
The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton…
Abstract
Purpose
The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.
Design/methodology/approach
Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.
Findings
Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.
Originality/value
To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.
Details
Keywords
Hossein Barani and Homa Maleki
Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red…
Abstract
Purpose
Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red Cabbage as a natural colorant to obtain different colors on wool yarn, as well as specify the optimum dyeing condition by response surface methodology for obtaining a blue color.
Design/methodology/approach
The effect of dyeing process parameters such as mordant concentration, dyeing time, pH of dyeing bath and dyeing temperature examined in the color characteristics of the dyed wool samples.
Findings
The obtained results indicated that the diverse colors achieve by varying the dyeing process parameters, which is in the range of 26° up to 271°. The non-mordanted dyed wool samples showed a red and red brownish color (Hue angle = 26° up to 70°), and the mordanted dyed wool samples showed a blue and blue-greenish color (Hue angle = 230° up to 271°). The obtained blue color with the optimized dyeing condition presented a considerable good wash and lightfastness.
Originality/value
This study provides a promising application of Red Cabbage as a natural colorant for obtaining different colors by varying the dyeing process parameters such as pH and stannous ion concentrations. The stannous ions yielded a co-pigmentation and presented a blue color on wool fibers, which is extremely difficult to obtain with natural colorant.