Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 July 2022

Mehmet Kadri Akyüz

The purpose of this study is to determine and compare the total and per passenger HC, CO, NOx and CO2 emissions from aircraft landing and takeoff (LTO) cycle before and during the…

241

Abstract

Purpose

The purpose of this study is to determine and compare the total and per passenger HC, CO, NOx and CO2 emissions from aircraft landing and takeoff (LTO) cycle before and during the COVID-19 pandemic. In addition, it is aimed to determine the global warming potential (GWP), environmental impacts (EIs) and enviroeconomic cost (eco-cost) of these emissions in total and per passenger.

Design/methodology/approach

Analyses were carried out with the help of the International Civil Aviation Organization’s Engine Emission Databank, using real flight data recorded by the airport authority.

Findings

During the COVID-19 pandemic, total pollutant emissions (HC, CO, NOx and CO2) decreased between 23.7% and 30.8% compared with the pre-pandemic period. In addition, per passenger pollutant emissions increased during the pandemic. Compared with the pre-pandemic period, GWP, EI and eco-cost values decreased by 24.1%, 23.89% and 23.93%, respectively, in the pandemic. However, the per passenger GWP, EI and eco-cost values increased by about 10% compared with the pre-pandemic period.

Practical implications

This study reveals the effects of COVID-19 in terms of EIs and environmental costs caused by aircraft in the LTO cycle.

Originality/value

The originality of this study is to calculate the pollutant emissions caused by aircraft in the LTO cycle with real flight data and to reveal the effects of the COVID-19 pandemic. The novelty of this study is the determination and comparison of total and per passenger pollutant emissions, GWP, EI and eco-cost before and during the pandemic.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 22 October 2021

Mehmet Kadri Akyüz

The purpose of this paper is to calculate the fuel consumption and emissions of carbon monoxide (CO), nitrogen oxide (NOx) and hydrocarbons (HC) in the taxi-out period of aircraft…

406

Abstract

Purpose

The purpose of this paper is to calculate the fuel consumption and emissions of carbon monoxide (CO), nitrogen oxide (NOx) and hydrocarbons (HC) in the taxi-out period of aircraft at the International Diyarbakir Airport in 2018 and 2019.

Design/methodology/approach

Calculations were performed by determining the engine operating times in the taxi-out period with the flight data obtained from the airport authority. In the analyses, aircraft series and aircraft engine types were determined, and the Engine Exhaust Emission Databank of the International Civil Aviation Authority (ICAO) were used for the calculation.

Findings

Total fuel consumption in the taxi-out period in 2018 and 2019 was calculated as 525.64 and 463.69 tons, respectively. In 2018, HC, CO and NOx emissions caused by fuel consumption were found to be 1,109, 10,668 and 2,339 kg, respectively. In 2019, the total HC, CO and NOx emissions released to the atmosphere during the taxi-out phase are 966, 9,391 and 2,126 kg, respectively. B737 Series aircraft have the largest share in total fuel consumption and pollutant emissions.

Practical implications

This study explains the importance of determining fuel consumption and pollutant emissions by considering engine operating times in the taxi-out period. The study provides aviation authorities with scientific methods to follow in calculating fuel consumption and emissions from aircraft operations.

Originality/value

The originality of this study is the calculation of fuel consumption and pollutant emissions by determining real-time engine running times in the taxi-out period. In addition, calculations were made with real engine operating times determined in the taxi-out period using real flight data.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 23 September 2020

Mehmet Kadri Akyüz, Hasim Kafali and Onder Altuntas

This paper aims to measure the thermal comfort conditions and indoor air quality parameters, through on-site measurements taken in the areas mostly occupied by the passengers and…

596

Abstract

Purpose

This paper aims to measure the thermal comfort conditions and indoor air quality parameters, through on-site measurements taken in the areas mostly occupied by the passengers and airport staff. Terminal buildings consist of areas with various functions. Heating, ventilation and air conditioning requirements vary from area to area, thus leading to challenges in the management of indoor environment quality. Therefore, the study focuses on investigating the indoor environment conditions in various areas of the terminal buildings.

Design/methodology/approach

In this study, the thermal comfort and indoor air quality were evaluated based on the parameters [CO2 concentration, relative humidity, temperature, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD)] collected for summer 2019 from different zones inside the International Dalaman Airport terminal building located in the southwest of Turkey. The measurements were performed in the areas mostly occupied by the airport staff and passengers (check-in area, security control areas, international departure lounge, domestic departure lounge and baggage claim hall).

Findings

As a result of the study, it was observed that the CO2 concentration was 480–965 ppm, the relative humidity was 51.9–75.8% and the temperature was in the range of 23.9°C–28.3°C inside the airport terminal. The PMV values were determined to be in the range of −0.23 to 0.67, and the PPD values 5–15%, which are used to measure the thermal comfort conditions.

Originality/value

There has been limited study on the determination of the indoor air quality in airport terminals and the investigation of the thermal comfort conditions. However, in this study, indoor air quality and thermal comfort conditions were determined by on-site measurements in the five mostly occupied areas by passengers and employees in the terminal building.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 7 May 2024

İsmail Cengiz Yılmaz and Hamdi Tekin

Migration is on the rise due to globalization and human mobility. This has led to increased impacts that have affected many industries, including the construction industry. A…

129

Abstract

Purpose

Migration is on the rise due to globalization and human mobility. This has led to increased impacts that have affected many industries, including the construction industry. A large number of migrants are employed in the construction sector, and employers are challenged to make sure all employees are properly integrated to meet the demands needed for construction projects. This article addresses key differences between migrant and native workers to help hiring departments in the construction industry analyse workers' attitudes based on cultural and motivational factors to have the workforce they need to succeed.

Design/methodology/approach

The research used both quantitative and qualitative surveys. A two-part questionnaire, designed through a comprehensive literature review, was carried out to identify key differences between native and migrant workers. The data were obtained and then analysed using different statistical approaches, including factor analysis protocol, factor structure model, reliability analysis, relative importance index and nonparametric test analysis. A semi-structured interview was then conducted to discuss all the findings.

Findings

The study indicated that migrant workers, compared to natives, tend to give more importance to their working environment, particularly accommodation, work safety and relations with teammates. Also, migrants typically take a socialistic approach instead of an individual approach while at work and reveal an extensive range of behaviours based on a sense of belonging. It might be more important for migrants to have a place in society, to have a settled life and to be integrated into an established order than to improve their rights and benefits. On the other hand, the study argued that native workers tend to prioritize their benefits at work, such as regular payments for overtime and insurance premiums. Their behaviours might carry a more neutral and individual attitude as well as specific cultural traces.

Research limitations/implications

The study is limited to a sample of participants in the Turkish construction sector. Further research based on more cultural models and motivational factors with a larger group of respondents from different countries could offer better results. The results of the study might not apply to a broad context due to many other factors that affect worker behaviours, such as geography, cultural structures and working conditions. Despite these drawbacks, the present paper may help employers and other stakeholders understand the best way to incorporate migrants into the construction industry.

Originality/value

This research is very important for the construction industry in various countries that are currently employing thousands of migrants. Being able to address the key differences between migrants and native workers based on cultural and motivational factors might help with engagement and create a level of harmony in the field for greater productivity.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 4 of 4
Per page
102050