Search results
1 – 3 of 3Md. Asadul Hoque, Md. Anwarul Kabir Bhuiya, Md. Saiduzzaman, Md. Ashadul Islam and Mubarak A. Khan
This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The…
Abstract
Purpose
This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The natural fiber-reinforced composite has been a wide area of research, and it is the preferred choice due to its superior physical and mechanical properties like low density, stiffness and light weight. Among several natural fibers, jute is one that has good potential as reinforcement in polymer composite. Jute fibers biodegradability, low cost and moderate mechanical properties make it as a preferable reinforcement material in the development of polymer matrix composites.
Design/methodology/approach
In the present work, raw jute fabrics-reinforced polyester composite (as RJPC) and polyethylene glycol (PEG)-modified bleached jute fabrics-reinforced polyester composite (as MBJPC) were fabricated by the heat-press molding technique at 120°C for 5 min at a pressure of 5 tons. Prior to the composite formulation, low lignin content bleached jute fabrics were chemically modified with PEG for the better compatibility of the fabrics with the polyester matrix and enhancing elongation properties. All the composites irradiated with different gamma radiation dose in the range of 2 to 14 kGy.
Findings
The irradiated composites showed highest improved of mechanical properties at the 10 kGy γ-radiation dose. However, the hard and sunlight-sensitive high lignin content γ-RJPC showed higher mechanical properties except elongation properties compared to that of low lignin content γ-MBJPC.
Originality/value
After the γ-ray irradiation, both the γ-RJPC and γ-MBJPC developed high degree of cross-linking among the polyester molecules and thereto fabrics with the consequence of significant changed of surface morphology as observed by atomic force microscopy.
Details
Keywords
Md Asadul Hoque, Md Saiduzzaman, A. Nayeem Faruqui and Md Ashadul Islam
This paper aims to examine the loss of tenacity and colorfastness properties of bleached and modified (acrylonitrile, AN and methacrylonitrile, MAN) jute fibres dyed with Reactive…
Abstract
Purpose
This paper aims to examine the loss of tenacity and colorfastness properties of bleached and modified (acrylonitrile, AN and methacrylonitrile, MAN) jute fibres dyed with Reactive Orange 14 and Basic Violet 14.
Design/methodology/approach
Jute fibres dyed with Reactive Orange 14 and Basic Violet 14 were studied as a function of exposure to sunlight in air, washing with soap solution and spotting with acids and alkalis.
Findings
Dye absorption of Basic Violet 14 was higher compared to Reactive Orange 14 at optimum dyeing conditions. Optimum dye uptake of Reactive Orange 14 required relatively severe conditions compared to that of Basic Violet 14. Whereas, Reactive Orange 14 showed overall good colorfastness to sunlight and moderate in washing compared to Basic Violet 14. All the bleached and modified fibres showed good colorfastness to weak acids and alkalis regardless of Reactive Orange 14 and Basic Violet 14 dyes. The loss in tenacity was higher in the case of non-modified fibres, and among the modified fibres, Basic Violet 14 showed the lowest loss in tenacity in the exposure to sunlight.
Originality/value
Many studies have been devoted to improve the substantivity of cellulosic fibre for reactive dyes. A few efforts were made to improve the light fastness. In this work, investigation will be made on a comparative study of loss of tenacity and colorfastness properties of bleached and modified (AN and MAN) jute fibres dyed with both Reactive Orange 14 and Basic Violet 14 on exposure to sunlight, washing and acid and alkali spotting. Optimum dyeing conditions will also be investigated for economic dyeing.
Details
Keywords
Md. Asadul Hoque, Md. Ibrahim H. Mondal, Md. Saiduzzaman and Uttom Kumar Paul
Colorfastness properties of dyed degummed and dyed stannic chloride weighted silk fiber were studied as a function of exposure to sunlight in air, washing with soap solution and…
Abstract
Purpose
Colorfastness properties of dyed degummed and dyed stannic chloride weighted silk fiber were studied as a function of exposure to sunlight in air, washing with soap solution and spotting with alkalis.
Design/methodology/approach
Improved multi-voltine variety of degummed silk fibers was weighted with the treatment of stannic chloride at the varying pH level. Maximum weighting of silk fiber was achieved at the optimum SnCl4 concentration, pH of the solution, time and temperature. The degummed (un-weighted) and weighted silk fibers were then dyed with Direct Blue 1 and Direct Red 28 dyes at the optimized dying conditions.
Findings
The role of base (Na2CO3) on dyeing of weighted silk fiber with Direct Red 28 was found very influential. The loss in tenacity of degummed silk fiber was higher than that of SnCl4 weighted silk fiber when they were exposed to sunlight in air.
Originality/value
The colorfastness of weighted dyed silk was comparatively higher than that of un-weighted dyed silk.
Details