Gerasimos G. Rigatos, Masoud Abbaszadeh, Pierluigi Siano and Jorge Pomares
Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are…
Abstract
Purpose
Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist of a fixed inner shell, which is the stator, and a rotating outer shell, which is the rotor. Their dynamic model is multivariable and strongly nonlinear. The treatment of the associated control problem is important.
Design/methodology/approach
In this paper, the multivariable dynamic model of permanent magnet synchronous spherical motors is analysed, and a nonlinear optimal (H-infinity) control method is developed for it. Differential flatness properties are proven for the spherical motors’ state-space model. Next, the motors’ state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instance around a time-varying operating point, which is defined by the present value of the motors’ state vector and by the last sampled value of the control input vector. For the approximately linearized model of the permanent magnet synchronous spherical motors, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains, an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach implemented in successive loops.
Findings
Due to the nonlinear and multivariable structure of the state-space model of spherical motors, the solution of the associated nonlinear control problem is a nontrivial task. In this paper, a novel nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space model with the use of first-order Taylor series expansion and the computation of the associated Jacobian matrices. Furthermore, the paper has introduced a different solution to the nonlinear control problem of the permanent magnet synchronous spherical motor, which is based on flatness-based control implemented in successive loops.
Research limitations/implications
The presented control approaches do not exhibit any limitations, but on the contrary, they have specific advantages. In comparison to global linearization-based control schemes (such as Lie-algebra-based control), they do not make use of complicated changes of state variables (diffeomorphisms) and transformations of the system's state-space description. The computed control inputs are applied directly to the initial nonlinear state-space model of the permanent magnet spherical motor without the intervention of inverse transformations and thus without coming against the risk of singularities.
Practical implications
The motion control problem of spherical motors is nontrivial because of the complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been several attempts to apply nonlinear feedback control to permanent magnet-synchronous spherical motors. However, due to the model’s complexity, few results exist about the associated nonlinear optimal control problem. The proposed nonlinear control methods for permanent magnet synchronous spherical motors make more efficient, precise and reliable the use of such motors in robotics, electric traction and several automation systems.
Social implications
The treated research topic is central for robotic and industrial automation. Permanent magnet synchronous spherical motors are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. The solution of the control problem for the nonlinear dynamic model of permanent magnet synchronous spherical motors has many industrial applications and therefore contributes to economic growth and development.
Originality/value
The proposed nonlinear optimal control method is novel compared to past attempts to solve the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation which is used for computing the feedback gains of the controller is new, and so is the global stability proof for this control method. Compared to nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed into the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes, which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. Furthermore, the second control method proposed in this paper, which is flatness-based control in successive loops, is also novel and demonstrates substantial contribution to nonlinear control for robotics and industrial automation.
Details
Keywords
Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares
A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…
Abstract
Purpose
A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.
Design/methodology/approach
A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.
Findings
So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.
Research limitations/implications
There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.
Practical implications
There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.
Social implications
The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.
Originality/value
The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.
Details
Keywords
Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh
The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…
Abstract
Purpose
The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.
Design/methodology/approach
A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.
Findings
To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.
Research limitations/implications
Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.
Practical implications
In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.
Social implications
Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.
Originality/value
The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.
Details
Keywords
Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano
Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…
Abstract
Purpose
Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.
Design/methodology/approach
The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.
Findings
The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.
Practical implications
The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.
Social implications
Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.
Originality/value
Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.
Details
Keywords
Mohammad Reza Abbaszadeh, Mahdi Salehi and Seyed Masoud Faiz
This study aims to investigate the relationship between information technology and internal controls of state agencies in Iran.
Abstract
Purpose
This study aims to investigate the relationship between information technology and internal controls of state agencies in Iran.
Design/Methodology/Approach
The research population includes all auditors and managers working in public sector. Data collection instrument is a questionnaire designed by the researcher and administrated during March 5, 2016. The collected data are analyzed through descriptive and inferential statistics (binomial test).
Findings
The findings of the research show that there is a significant relationship between information technology and internal controls (administrative, financial and accounting controls, risk assessment, information and communication, control activities and monitoring). Moreover, the alteration of data collection methods (from traditional to modern) and the written instructions (in information technology) have a positive effect on the internal control and its subscales.
Originality/value
With regard to the emphasis on the development of computer application and the use of new processing facilities and the exchange of information and its specific controlling consequences, this is an innovative research.
Details
Keywords
Masoud Mozaffari, Annunziata D’Orazio, Arash Karimipour, Ali Abdollahi and Mohammad Reza Safaei
The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.
Abstract
Purpose
The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.
Design/methodology/approach
Develop the thermal lattice Boltzmann method based on double population of hydrodynamic and thermal distribution functions.
Findings
The buoyancy forces, caused by gravity, can change the hydrodynamic properties of the flow. As a result, the gravity term was included in the Boltzmann equation as an external force, and the equations were rewritten under new conditions.
Originality/value
To the best of the authors’ knowledge, the current study is the first attempt to investigate mixed-convection heat transfer in an inclined microchannel in a slip flow regime.
Details
Keywords
Abbas Ali Daryaei, Afshin Balani and Yasin Fattahi
The literature on the influence of audit committees (AC) and cosmetic accounting (CA) is scarce. AC plays a unique and vital role in boosting earnings reliability in countries…
Abstract
Purpose
The literature on the influence of audit committees (AC) and cosmetic accounting (CA) is scarce. AC plays a unique and vital role in boosting earnings reliability in countries with weaker application of accounting standards or weaker legal protection for investors. AC, therefore, are considered to be one of the essential tools available to directors in supervising management decisions regarding financial reporting. This paper aims to examine the influence of AC characteristics (ACC) on CA and how this relationship is moderated by the audit fee.
Design/methodology/approach
This study used probit regression to analyze 1,218 firm-year observations of listed companies in Tehran Stock Exchange from 2014 to 2020.
Findings
The results show that AC financial accounting expertise, AC independence, female AC membership and AC tenure were negatively related to CA. The negative relationship is highly pronounced when a firm incurs higher audit fees, and audit fees moderate the relationship between ACC and CA. Results for the robustness checks show that only AC independence was significant, and the results of other characteristics were not significant.
Research limitations/implications
This research was conducted in an Iranian setting where the formation of ACs is on the verge of regulation; therefore, the data used for the study only contains the seven-year period of ACs’ statutory activity. In addition, a lack of consensus on the precise measures of an AC’s effectiveness could be considered as a restrictive factor.
Originality/value
The findings provide an initial insight into the effect AC on CA and moderating effect of audit fee on the relationship between ACC and CA.