Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 January 2017

Marneni Narahari, Suresh Kumar Raju Soorapuraju, Rajashekhar Pendyala and Ioan Pop

The purpose of this paper is to present a numerical investigation of the transient two-dimensional natural convective boundary-layer flow of a nanofluid past an isothermal…

235

Abstract

Purpose

The purpose of this paper is to present a numerical investigation of the transient two-dimensional natural convective boundary-layer flow of a nanofluid past an isothermal vertical plate by incorporating the effects of Brownian motion and thermophoresis in the mathematical model.

Design/methodology/approach

The problem is formulated using the Oberbeck–Boussinesq and the standard boundary-layer approximations. The governing coupled non-linear partial differential equations for conservation of mass, momentum, thermal energy and nanoparticle volume fraction have been solved by using an efficient implicit finite-difference scheme of the Crank–Nicolson type, which is stable and convergent. Numerical computations are performed and the results for velocity, temperature and nanoparticle volume fraction are presented in graphs at different values of system parameters such as Brownian motion parameter, thermophoresis parameter, buoyancy ratio parameter, Prandtl number, Lewis number and dimensionless time. The results for local and average skin-friction and Nusselt number are also presented graphically and discussed thoroughly.

Findings

It is found that the velocity, temperature and nanoparticle volume fraction profiles enhance with respect to time and attain steady-state values as time progresses. The local Nusselt number is found to decrease with increasing thermophoresis parameter, while it increases slightly with increasing Brownian motion parameter. To validate the present numerical results, the steady-state local Nusselt number results for the limiting case of a regular fluid have been compared with the existing well-known results at different Prandtl numbers, and the results are found to be in an excellent agreement.

Research limitations/implications

The present analysis is limited to the transient laminar natural convection flow of a nanofluid past an isothermal semi-infinite vertical plate in the absence of viscous dissipation and thermal radiation. The unsteady natural convection flow of a nanofluid will be investigated for various physical conditions in a future work.

Practical implications

Unsteady flow devices offer potential performance improvements as compared with their steady-state counterparts, and the flow fields in the unsteady flow devices are typically transient in nature. The present study provides very useful information for heat transfer engineers to understand the heat transfer enhancement with the nanofluid flows. The present results have immediate relevance in cooling technologies.

Originality/value

The present research work is relatively original and illustrates the transient nature of the natural convective nanofluid boundary-layer flow in the presence of Brownian motion and thermophoresis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2016

Marneni Narahari and M Kamran

The purpose of this paper is to investigate the effects of thermal radiation and viscous dissipation on steady natural convection flow of a viscous incompressible fluid along a…

196

Abstract

Purpose

The purpose of this paper is to investigate the effects of thermal radiation and viscous dissipation on steady natural convection flow of a viscous incompressible fluid along a uniformly moving infinite vertical porous plate with Newtonian heating in the presence of transverse magnetic field. The governing non-linear boundary layer equations are solved by using homotopy analysis method (HAM). The effects of various system parameters on velocity and temperature fields are discussed graphically, and the numerical values for skin friction and Nusselt number are presented in tabular form.

Design/methodology/approach

The problem is formulated using the Boussinesq approximation under the effects of thermal radiation and transverse magnetic field. The resulting coupled system of non-linear differential equations is solved using HAM with appropriate boundary conditions for Newtonian heating of the plate. HAM is a powerful method which provides rapidly converging series solution for the velocity and temperature fields. The effects of Prandtl number, Grashof number, suction parameter, magnetic field parameter, radiation parameter and Eckert number on the fluid velocity, temperature, skin friction and Nusselt number have been investigated.

Findings

The HAM solution has been successfully applied to find the converging series solution for velocity and temperature fields in terms of pertinent system parameters. Comparison of the exact solution results agree well with the HAM solution results in the absence of Eckert number and this indicates that the HAM solutions are accurate. It is found that the velocity and temperature profiles decreases with the increase of thermal radiation and suction parameters. An increase in the magnetic field parameter leads to a rise in the fluid temperature and fall in the fluid velocity.

Research limitations/implications

The present analysis is limited to steady state laminar natural convection flow only. Unsteady natural- /mixed-convection laminar flow in the presence of thermal radiation, chemical reaction and transverse magnetic field will be investigated in a future work.

Practical implications

The study provides very useful information for heat transfer engineers to understand the heat transfer rate when the moving vertical porous surface temperature is not known a prior. The present results have immediate relevance in the design of nuclear reactors where vertical moving porous plates are using as control rods.

Originality/value

The present research work is relatively original and illustrates the effects of thermal radiation, viscous dissipation and transverse magnetic field on natural convection flow past a uniformly moving infinite vertical porous plate with Newtonian heating.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2
Per page
102050